[1] Q. Li, Y.N. Wei, Z.G. Chen, Water-CCUS nexus: Challenges and opportunities of China's coal chemical industry, Clean Technol. Environ. Policy 18 (3) (2016) 775–786. [2] S.Y. Liang, B. Peng, S.Y. Liu, W.D. Zhang, M. Guo, F.Q. Cheng, M. Zhang, Low-temperature highly efficient and selective removal of H2S over three-dimensional Zn–Cu-based materials in an anaerobic environment, Environ. Sci. Technol. 54 (10) (2020) 5964–5972. [3] Y. Wang, Y.X. Liu, Z.H. Wang, Z.L. Wang, A thermally activated double oxidants advanced oxidation system for gaseous H2S removal: Mechanism and kinetics, Chem. Eng. J. 434 (2022) 134430. [4] M.S. Parandin, H. Rashidi, Deep desulfurization of natural gas by a commercial ZnO adsorbent: A mathematical study for fixed-bed reactors, J. Nat. Gas Sci. Eng. 59 (2018) 116–123. [5] S. Watanabe, Chemistry of H2S over the surface of common solid sorbents in industrial natural gas desulfurization, Catal. Today 371 (2021) 204–220. [6] G.Q. Liu, Z.H. Huang, F.Y. Kang, Preparation of ZnO/SiO2 gel composites and their performance of H2S removal at room temperature, J. Hazard. Mater. 215-216 (2012) 166–172. [7] L.J. Wang, H.L. Fan, J. Shangguan, E. Croiset, Z.W. Chen, H. Wang, J. Mi, Design of a sorbent to enhance reactive adsorption of hydrogen sulfide, ACS Appl. Mater. Interfaces 6 (23) (2014) 21167–21177. [8] C. Yang, S. Yang, H.L. Fan, J. Wang, H. Wang, J. Shangguan, C. Huo, A sustainable design of ZnO-based adsorbent for robust H2S uptake and secondary utilization as hydrogenation catalyst, Chem. Eng. J. 382 (2020) 122892. [9] D.H. Jiang, L.H. Su, L. Ma, N. Yao, X.L. Xu, H.D. Tang, X.N. Li, Cu–Zn–Al mixed metal oxides derived from hydroxycarbonate precursors for H2S removal at low temperature, Appl. Surf. Sci. 256 (10) (2010) 3216–3223. [10] K. Polychronopoulou, J.L.G. Fierro, A.M. Efstathiou, Novel Zn–Ti-based mixed metal oxides for low-temperature adsorption of H2S from industrial gas streams, Appl. Catal. B Environ. 57 (2) (2005) 125–137. [11] A.E. Danks, S.R. Hall, Z. Schnepp, The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis, Mater. Horiz. 3 (2) (2016) 91–112. [12] H. Dislich, Sol–gel: Science, processes and products, J. Non Cryst. Solids 80 (1–3) (1986) 115–121. [13] L.L. Hench, J.K. West, The sol–gel process, Chem. Rev. 90 (1) (1990) 33–72. [14] K. Polychronopoulou, A.M. Efstathiou, Effects of sol–gel synthesis on 5Fe–15Mn–40Zn–40Ti–O mixed oxide structure and its H2S removal efficiency from industrial gas streams, Environ. Sci. Technol. 43 (12) (2009) 4367–4372. [15] M. Parashar, V.K. Shukla, R. Singh, Metal oxides nanoparticles via sol–gel method: A review on synthesis, characterization and applications, J. Mater. Sci. Mater. Electron. 31 (5) (2020) 3729–3749. [16] S. Sert Çok, F. Koç, F. Balkan, N. Gizli, Revealing the pore characteristics and physicochemical properties of silica ionogels based on different sol–gel drying strategies, J. Solid State Chem. 278 (2019) 120877. [17] C. Zeng, K. Tong, M.Y. Zhang, Q.Z. Huang, Z.A. Su, C. Yang, X.D. Wang, Y.F. Wang, W.J. Song, The effect of sol–gel process on the microstructure and particle size of ZrC–SiC composite powders, Ceram. Int. 46 (4) (2020) 5244–5251. [18] C. Yang, J.W. Kou, H.L. Fan, Z. Tian, W. Kong, J. Shangguan, Facile and versatile sol–gel strategy for the preparation of a high-loaded ZnO/SiO2 adsorbent for room-temperature H2S removal, Langmuir 35 (24) (2019) 7759–7768. [19] W.F. Chen, F.S. Li, J.Y. Yu, Combustion synthesis and characterization of nanocrystalline CeO2-based powders via ethylene glycol–nitrate process, Mater. Lett. 60 (1) (2006) 57–62. [20] A. Gankanda, D.M. Cwiertny, V.H. Grassian, Role of atmospheric CO2 and H2O adsorption on ZnO and CuO nanoparticle aging: Formation of new surface phases and the impact on nanoparticle dissolution, J. Phys. Chem. C 120 (34) (2016) 19195–19203. [21] S.T. Chua, K.Y. Lim, Z. Zhang, C.H. Sow, Selective micro laser annealing for fluorescence tuning of carbon-incorporated zinc oxide nanowire arrays, J. Mater. Chem. C 7 (21) (2019) 6279–6288. [22] J.N. Heo, J. Kim, J.Y. Do, N.K. Park, M. Kang, Self-assembled electron-rich interface in defected ZnO: rGO–Cu: Cu2O, and effective visible light-induced carbon dioxide photoreduction, Appl. Catal. B Environ. 266 (2020) 118648. [23] F.J. Li, H.Q. Li, L.G. Wang, P. He, Y. Cao, Magnesium oxide nanosheets as effective catalysts for the synthesis of diethyl carbonate from ethyl carbamate and ethanol, Catal. Sci. Technol. 5 (2) (2015) 1021–1034. [24] M.W. Gu, S. Dai, R.F. Qiu, M.E. Ford, C.X. Cao, I.E. Wachs, M.H. Zhu, Structure-activity relationships of copper- and potassium-modified iron oxide catalysts during reverse water–gas shift reaction, ACS Catal. 11 (20) (2021) 12609–12619. [25] Q. Geng, L.J. Wang, C. Yang, H.Y. Zhang, Y.R. Zhao, H.L. Fan, C. Huo, Room-temperature hydrogen sulfide removal with zinc oxide nanoparticle/molecular sieve prepared by melt infiltration, Fuel Process. Technol. 185 (2019) 26–37. [26] S. Yang, Q. Geng, C. Yang, H.L. Fan, M.S. Liang, J.X. Lei, S.G. Ju, Insight into the influence of Ni2+ doping on the room temperature desulfurization/regeneration performance of ZnO supported MCM-41 adsorbents, Fuel 313 (2022) 122694. [27] M. Stefanescu, C. Caizer, M. Stoia, O. Stefanescu, Ultrafine, perfectly spherical Ni–Zn ferrite nanoparticles, with ultranarrow distribution, isolated in a silica matrix, prepared by a novel synthesis method in the liquid phase, Acta Mater. 54 (5) (2006) 1249–1256. [28] X.C. Jiang, Y.L. Wang, T. Herricks, Y.N. Xia, Ethylene glycol-mediated synthesis of metal oxide nanowires, J. Mater. Chem. 14 (4) (2004) 695–703. [29] M. Stefanescu, M. Stoia, O. Stefanescu, Thermal and FT-IR study of the hybrid ethylene-glycol–silica matrix, J. Sol Gel Sci. Technol. 41 (1) (2007) 71–78. [30] M. Stefanescu, C. Caizer, M. Stoia, O. Stefanescu,, Ni, Zn/SiO2 ferrite nanocomposites prepared by an improved sol–gel method and their characterisation, J. Optoelectron. Adv. Mater. 7 (2005) 607–614. [31] M. Barbu, M. Stoia, P. Barvinschi, L. Barbu-Tudoran, M. Stefanescu, Study on the formation of MCr2O4/SiO2 nanocomposites from hybrid gels PVA–TEOS–metal nitrates, Thermochim. Acta 564 (2013) 43–50. [32] X. Shi, P.Q. Wang, W. Li, Y. Bai, H.Q. Xie, Y. Zhou, L.Q. Ye, Change in photocatalytic NO removal mechanisms of ultrathin BiOBr/BiOI via NO3– adsorption, Appl. Catal. B Environ. 243 (2019) 322–329. [33] S.M. Masoudpanah, S.M. Mirkazemi, S. Shabani, P.T. Dolat Abadi, The effect of the ethylene glycol to metal nitrate molar ratio on the phase evolution, morphology and magnetic properties of single phase BiFeO3 nanoparticles, Ceram. Int. 41 (8) (2015) 9642–9646. [34] H.S. Costa, M.F. Rocha, G.I. Andrade, E.F. Barbosa-Stancioli, M.M. Pereira, R.L. Orefice, W.L. Vasconcelos, H.S. Mansur, Sol–gel derived composite from bioactive glass–polyvinyl alcohol, J. Mater. Sci. 43 (2) (2007) 494–502. [35] J.N. Zheng, J.J. Lv, S.S. Li, M.W. Xue, A.J. Wang, J.J. Feng, One-pot synthesis of reduced graphene oxide supported hollow Ag@Pt core–shell nanospheres with enhanced electrocatalytic activity for ethylene glycol oxidation, J. Mater. Chem. A 2 (10) (2014) 3445–3451. [36] C. Yang, J. Wang, H.L. Fan, Y.F. Hu, J.S. Shen, J. Shangguan, B.J. Wang, Activated carbon-assisted fabrication of cost-efficient ZnO/SiO2 desulfurizer with characteristic of high loadings and high dispersion, Energy Fuels 32 (5) (2018) 6064–6072. [37] H.J. Jeong, D.K. Kim, S.B. Lee, S.H. Kwon, K. Kadono, Preparation of water-repellent glass by sol–gel process using perfluoroalkylsilane and tetraethoxysilane, J. Colloid Interface Sci. 235 (1) (2001) 130–134. [38] D.A. Giannakoudakis, J.A. Arcibar-Orozco, T.J. Bandosz, Effect of GO phase in Zn(OH)2/GO composite on the extent of photocatalytic reactive adsorption of mustard gas surrogate, Appl. Catal. B Environ. 183 (2016) 37–46. [39] Y. Sohn, Structural and spectroscopic characteristics of terbium hydroxide/oxide nanorods and plates, Ceram. Int. 40 (9) (2014) 13803–13811. [40] M.K. Liang, M.J. Limo, A. Sola-Rabada, M.J. Roe, C.C. Perry, New insights into the mechanism of ZnO formation from aqueous solutions of zinc acetate and zinc nitrate, Chem. Mater. 26 (14) (2014) 4119–4129. [41] A.S. Poyraz, C.H. Kuo, S. Biswas, C.K. King'ondu, S.L. Suib, A general approach to crystalline and monomodal pore size mesoporous materials, Nat. Commun. 4 (2013) 2952. [42] M. Ştefãnescu, V. Sasca, M. Birzescu, Studies on the thermal decompositions of heteropolynuclear glyoxylates of Cr (III) and Cu (II), J. Therm. Anal. Calorim. 56 (1999) 579–586. |