[1] J.B. Zimmerman, P.T. Anastas, H.C. Erythropel, W. Leitner, Designing for a green chemistry future, Science 367 (6476) (2020) 397–400. [2] N. Zhu, X. Hu, Z. Fang, K. Guo, Chemoselective polymerizations, Prog. Polym. Sci. 117 (2021) 101397. [3] J.Y. Liao, S.L. Zhang, Z.S. Wang, X. Song, D.L. Zhang, R. Kumar, J. Jin, P. Ren, H.Z. You, F.E. Chen, Transition-metal catalyzed asymmetric reactions under continuous flow from 2015 to early 2020, Green Synth. Catal. 1 (2) (2020) 121-133. [4] Y. Liu, X.Y. Jiang, Why microfluidics? Merits and trends in chemical synthesis, Lab Chip 17 (23) (2017) 3960–3978. [5] D. Wang, T. Zhang, Y.C. Yang, S.W. Tang, Simulation and design microreactor configured with micromixers to intensify the isobutane/1-butene alkylation process, J. Taiwan Inst. Chem. Eng. 98 (2019) 53–62. [6] W.Z. Guo, H.J. Heeres, J. Yue, Continuous synthesis of 5-hydroxymethylfurfural from glucose using a combination of AlCl3 and HCl as catalyst in a biphasic slug flow capillary microreactor, Chem. Eng. J. 381 (2020) 122754. [7] L.L. Lin, H. Quoc Pho, L. Zong, S.R. Li, N. Pourali, E. Rebrov, N. Nghiep Tran, K. Ostrikov, V. Hessel, Microfluidic plasmas: Novel technique for chemistry and chemical engineering, Chem. Eng. J. 417 (2021) 129355. [8] S.F. Zhao, J.W. Wu, P. Zhu, H.M. Xia, C. Chen, R.Q. Shen, Microfluidic platform for preparation and screening of narrow size-distributed nanoscale explosives and supermixed composite explosives, Ind. Eng. Chem. Res. 57 (39) (2018) 13191–13204. [9] S.F. Zhao, C. Chen, P. Zhu, H.M. Xia, J.Y. Shi, F. Yan, R.Q. Shen, Passive micromixer platform for size- and shape-controllable preparation of ultrafine HNS, Ind. Eng. Chem. Res. 58 (36) (2019) 16709–16718. [10] N.R. Visaveliya, J.M. Köhler, Hierarchical assemblies of polymer particles through tailored interfaces and controllable interfacial interactions, Adv. Funct. Mater. 31 (9) (2021) 2007407. [11] K.K. Kang, B. Lee, C.S. Lee, Recent progress in the synthesis of inorganic particulate materials using microfluidics, J. Taiwan Inst. Chem. Eng. 98 (2019) 2–19. [12] S. Ebadi, K. Ghasemipanah, E. Alaie, A. Rashidi, A. Khataee, COD removal from gasfield produced water using photoelectrocatalysis process on coil type microreactor, J. Ind. Eng. Chem. 98 (2021) 262–269. [13] N. Wang, Q. Wang, Y.Q. Geng, X. Sun, D.K. Wu, Y.Z. Yang, Recovery of Au(III) from acidic chloride media by homogenous liquid–liquid extraction with UCST-type ionic liquids, ACS Sustain. Chem. Eng. 7 (24) (2019) 19975–19983. [14] H.H. Shi, K.X. Nie, B. Dong, M.Q. Long, H. Xu, Z.C. Liu, Recent progress of microfluidic reactors for biomedical applications, Chem. Eng. J. 361 (2019) 635–650. [15] M. Ugrinic, A. deMello, T.Y.D. Tang, Microfluidic tools for bottom-up synthetic cellularity, Chem 5 (7) (2019) 1727–1742. [16] Y.C. Zhao, G.W. Chen, Progress in research on numbering-up of microchemical system, Sci. Sin.-Chim. 45 (1) (2015) 16–23. [17] J.S. Zhang, K. Wang, A.R. Teixeira, K.F. Jensen, G.S. Luo, Design and scaling up of microchemical systems: A review, Annu. Rev. Chem. Biomol. Eng. 8 (2017) 285–305. [18] M. Oelgemoeller, Highlights of photochemical reactions in microflow reactors, Chem. Eng. Technol. 35 (7) (2012) 1144–1152. [19] A. Yavorskyy, O. Shvydkiv, N. Hoffmann, K. Nolan, M. Oelgemöller, Parallel microflow photochemistry: Process optimization, scale-up, and library synthesis, Org. Lett. 14 (17) (2012) 4342–4345. [20] M. Qiu, L. Zha, Y. Song, L. Xiang, Y.H. Su, Numbering-up of capillary microreactors for homogeneous processes and its application in free radical polymerization, React. Chem. Eng. 4 (2) (2019) 351–361. [21] G.N. Ahn, T. Yu, H.J. Lee, K.W. Gyak, J.H. Kang, D. You, D.P. Kim, A numbering-up metal microreactor for the high-throughput production of a commercial drug by copper catalysis, Lab Chip 19 (20) (2019) 3535–3542. [22] C.X. Cao, D. Dang, Y.K. Li, J. Xu, Y. Cheng, Strategy for multiscale numbering-up of microstructured catalytic reactors: A numerical study based on the resistance network model, J. Taiwan Inst. Chem. Eng. 98 (2019) 70–77. [23] H. Han, J.H. Yoon, G.R. Yi, W.I. Choi, J.M. Lim, High-speed continuous production of polymeric nanoparticles with improved stability using a self-aligned coaxial turbulent jet mixer, J. Ind. Eng. Chem. 97 (2021) 411–416. [24] J.M. Lim, A. Swami, L.M. Gilson, S. Chopra, S. Choi, J. Wu, R. Langer, R. Karnik, O.C. Farokhzad, Ultra-high throughput synthesis of nanoparticles with homogeneous size distribution using a coaxial turbulent jet mixer, ACS Nano 8 (6) (2014) 6056–6065. [25] Y. Xie, Q. Chen, G.M. Huang, Y.J. Wang, W.G. Hu, Z.R. Yan, X. Wang, J. Huang, M.T. Gao, W.Y. Fei, G.S. Luo, Scaling up microreactors for kilogram-scale synthesis of piperacillin: Experiments and computational fluid dynamics simulations, AIChE J. (2021) e17231. [26] D. Cheng, X. Feng, C. Yang, Z.S. Mao, Modelling and experimental investigation of micromixing of single-feed semi-batch precipitation in a liquid–liquid stirred reactor, Chem. Eng. J. 293 (2016) 291–301. [27] W. Raza, S. Hossain, K.Y. Kim, A review of passive micromixers with a comparative analysis, Micromachines 11 (5) (2020) E455. [28] M. Bayareh, M.N. Ashani, A. Usefian, Active and passive micromixers: A comprehensive review, Chem. Eng. Process. Process. Intensif. 147 (2020) 107771. [29] H.E. Yang, G.C. Yao, D.S. Wen, Efficient mixing enhancement by orthogonal injection of shear-thinning fluids in a micro serpentine channel at low Reynolds numbers, Chem. Eng. Sci. 235 (2021) 116368. [30] C.S. Shin, P.L. Baldeck, Y.M. Nie, Y.H. Lee, Z.D. Lin, C.C. Chiang, C.L. Lin, Design and evaluation of a 3D multi-manifold micromixer realized by a double-Archimedes-screw for rapid mixing within a short distance, J. Taiwan Inst. Chem. Eng. 120 (2021) 59–66. [31] C.Y. Lee, W.T. Wang, C.C. Liu, L.M. Fu, Passive mixers in microfluidic systems: A review, Chem. Eng. J. 288 (2016) 146–160. [32] H.L. Lv, X.Y. Chen, X.W. Zeng, Optimization of micromixer with Cantor fractal baffle based on simulated annealing algorithm, Chaos Soliton. Fract. 148 (2021) 111048. [33] H.L. Lv, X.Y. Chen, New insights into the mechanism of fluid mixing in the micromixer based on alternating current electric heating with film heaters, Int. J. Heat Mass Transf. 181 (2021) 121902. [34] H.L. Lv, X.Y. Chen, X.Y. Wang, X.W. Zeng, Y.B. Ma, A novel study on a micromixer with Cantor fractal obstacle through grey relational analysis, Int. J. Heat Mass Transf. 183 (2022) 122159. [35] M.Z. Guo, X.J. Hu, F. Yang, S. Jiao, Y.J. Wang, H.Y. Zhao, G.S. Luo, H.M. Yu, Mixing performance and application of a three-dimensional serpentine microchannel reactor with a periodic vortex-inducing structure, Ind. Eng. Chem. Res. 58 (29) (2019) 13357–13365. [36] X. Chao, F.S. Xu, C.Q. Yao, T.T. Liu, G.W. Chen, CFD simulation of internal flow and mixing within droplets in a T-junction microchannel, Ind. Eng. Chem. Res. 60 (16) (2021) 6038–6047. [37] Y.Y. Liu, Q.K. Zhao, J. Yue, C.Q. Yao, G.W. Chen, Effect of mixing on mass transfer characterization in continuous slugs and dispersed droplets in biphasic slug flow microreactors, Chem. Eng. J. 406 (2021) 126885. [38] W.H. Chen, R. Jan, The torsion effect on fully developed laminar flow in helical square ducts, J. Fluids Eng. 115 (2) (1993) 292–301. [39] X.Y. Chen, T.C. Li, H. Zeng, Z.L. Hu, B.D. Fu, Numerical and experimental investigation on micromixers with serpentine microchannels, Int. J. Heat Mass Transf. 98 (2016) 131–140. [40] J.W. Wu, H.M. Xia, Y.Y. Zhang, S.F. Zhao, P. Zhu, Z.P. Wang, An efficient micromixer combining oscillatory flow and divergent circular chambers, Microsyst. Technol. 25 (7) (2019) 2741–2750. [41] D. Wang, G.Z. Ye, J.M. Mai, X.M. Chen, Y.Q. Yang, Y. Li, X.J. Chen, J. Chen, Novel micromixer with complex 3D-shape inner units: Design, simulation and additive manufacturing, Comput. Modeling Eng. Sci. 123 (3) (2020) 1061–1077. [42] M. Jasińska, Test reactions to study efficiency of mixing, Chem. Process. Eng. 36 (2) (2015) 171–208. |