[1] E.D. Sloan Jr, C.A. Koh, C.A. Koh, Clathrate Hydrates of Natural Gases (3rd ed.), CRC Press, Boca Rator, 2007. [2] A.R. Li, J. Wang, B.P. Bao, High-efficiency CO2 capture and separation based on hydrate technology: A review, Greenh. Gases Sci. Technol. 9 (2) (2019) 175–193. [3] M.D. Aminu, S.A. Nabavi, C.A. Rochelle, V. Manovic, A review of developments in carbon dioxide storage, Appl. Energy 208 (2017) 1389–1419. [4] Q.B. Sun, Y.T. Kang, Review on CO2 hydrate formation/dissociation and its cold energy application, Renew. Sustain. Energy Rev.62 (2016) 478–494. [5] S. Safari, F. Varaminian, Study the kinetics and thermodynamics conditions for CO2 hydrate formation in orange juice concentration, Innov. Food Sci. Emerg. Technol. 57 (2019) 102155. [6] P. Babu, P. Linga, R. Kumar, P. Englezos, A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture, Energy 85 (2015) 261–279. [7] Z.M. Aman, C.A. Koh, Interfacial phenomena in gas hydrate systems, Chem. Soc. Rev. 45 (6) (2016) 1678–1690. [8] A.A. Olajire, Flow assurance issues in deep-water gas well testing and mitigation strategies with respect to gas hydrates deposition in flowlines—A review, J. Mol. Liq. 318 (2020) 114203. [9] E.D. Sloan, Hydrate engineering, Vol. 21, SPE H.L. Doherty series, Ed. J. Ben Bloys, Richardson, Texas, 2000. [10] Z.J. Song, Y.L. Song, Y.Z. Li, B.J. Bai, K.P. Song, J.R. Hou, A critical review of CO2 enhanced oil recovery in tight oil reservoirs of North America and China, Fuel 276 (2020) 118006. [11] S. Kumar, A. Mandal, A comprehensive review on chemically enhanced water alternating gas/CO2 (CEWAG) injection for enhanced oil recovery, J. Petroleum Sci. Eng. 157 (2017) 696–715. [12] G.J. Mizenko , North Cross (Devonian)G.J. Mizenko, North Cross (Devonian) Unit CO Unit CO 2 flood: Status report, Proc. SPE/DOE Enhanced Oil Recovery Symposium, Tulsa, Oklahoma, April 1992. Paper Number: SPE-24210-MS. flood: Status report, Proc. SPE/DOE Enhanced Oil Recovery Symposium, Society of Petroleum Engineers , Tulsa, Oklahoma , ( 1992 ). [13] G.S. Cao, Y.J. Bai, X.L. Chen, X.H. Nan, Q.C. Cheng, Y. Sui, Z. Wang, Hydrate prevention based on convection and diffusion in alternate injection wells of carbon dioxide and water, Case Stud. Therm. Eng. 24 (2021) 100858. [14] A. Yu Manakov, N.V. Penkov, T.V. Rodionova, A.N. Nesterov, E.E. Fesenko, Kinetics of formation and dissociation of gas hydrates, Russ. Chem. Rev. 86 (9) (2017) 845–869. [15] A. Boufares, E. Provost, D. Dalmazzone, V. Osswald, P. Clain, A. Delahaye, L. Fournaison, Kinetic study of CO2 hydrates crystallization: Characterization using FTIR/ATR spectroscopy and contribution modeling of equilibrium/non-equilibrium phase-behavior, Chem. Eng. Sci. 192 (2018) 371–379. [16] K. Ohgaki, Y. Makihara, K. Takano, Formation of CO2 hydrate in pure and sea waters, J. Chem. Eng. Japan 26 (5) (1993) 558–564. [17] T. Adamova, A.S. Stoporev, A.Y. Manakov, Visual studies of methane hydrate formation on the water–oil boundaries, Cryst. Growth Des. 18 (11) (2018) 6713–6722. [18] S.L. Li, C.Y. Sun, B. Liu, Z.Y. Li, G.J. Chen, A.K. Sum, New observations and insights into the morphology and growth kinetics of hydrate films, Sci. Rep. 4 (2014) 4129. [19] S.L. Li, C.Y. Sun, B. Liu, X.J. Feng, F.G. Li, L.T. Chen, G.J. Chen, Initial thickness measurements and insights into crystal growth of methane hydrate film, AIChE J. 59 (6) (2013) 2145–2154. [20] C.J. Taylor, K.T. Miller, C.A. Koh, E.D. Sloan Jr, Macroscopic investigation of hydrate film growth at the hydrocarbon/water interface, Chem. Eng. Sci. 62 (23) (2007) 6524–6533. [21] A.S. Stoporev, A.P. Semenov, V.I. Medvedev, A.A. Sizikov, P.A. Gushchin, V.A. Vinokurov, A.Y. Manakov, Visual observation of gas hydrates nucleation and growth at a water–organic liquid interface, J. Cryst. Growth 485 (2018) 54–68. [22] B.Z. Peng, A. Dandekar, C.Y. Sun, H. Luo, Q.L. Ma, W.X. Pang, G.J. Chen, Hydrate film growth on the surface of a gas bubble suspended in water, J. Phys. Chem. B 111 (43) (2007) 12485–12493. [23] T. Uchida, T. Ebinuma, J. Kawabata, H. Narita, Microscopic observations of formation processes of clathrate-hydrate films at an interface between water and carbon dioxide, J. Cryst. Growth 204 (3) (1999) 348–356. [24] D. Daniel-David, F. Guerton, C. Dicharry, J.P. Torré, D. Broseta, Hydrate growth at the interface between water and pure or mixed CO2/CH4 gases: Influence of pressure, temperature, gas composition and water-soluble surfactants, Chem. Eng. Sci. 132 (2015) 118–127. [25] V.P. Melnikov, A.N. Nesterov, A.M. Reshetnikov, V.A. Istomin, Metastable states during dissociation of carbon dioxide hydrates below 273 K, Chem. Eng. Sci. 66 (1) (2011) 73–77. [26] Z.Y. Yin, M. Khurana, H.K. Tan, P. Linga, A review of gas hydrate growth kinetic models, Chem. Eng. J. 342 (2018) 9–29. [27] V.A. Vlasov, Diffusion-kinetic model of gas hydrate film growth along the gas–water interface, Heat Mass Transf. 55 (12) (2019) 3537–3545. [28] T. Mochizuki, Y.H. Mori, Simultaneous mass and heat transfer to/from the edge of a clathrate-hydrate film causing its growth along a water/guest-fluid phase boundary, Chem. Eng. Sci. 171 (2017) 61–75. [29] K. Saito, M. Kishimoto, R. Tanaka, R. Ohmura, Crystal growth of clathrate hydrate at the interface between hydrocarbon gas mixture and liquid water, Cryst. Growth Des. 11 (1) (2011) 295–301. [30] R. Tanaka, R. Sakemoto, R. Ohmura, Crystal growth of clathrate hydrates formed at the interface of liquid water and gaseous methane, ethane, or propane: Variations in crystal morphology, Cryst. Growth Des. 9 (5) (2009) 2529–2536. [31] T.P. Adamova, A.Y. Manakov, A.S. Stoporev, Laboratory reactor for visual examination of formation/decomposition of gas hydrates in water–oil systems, Russ. J. Appl. Chem. 92 (5) (2019) 607–613. [32] F.J. Pacheco-Roman, S.H. Hejazi, B.B. Maini, Estimation of low-temperature mass-transfer properties of methane and carbon dioxide in n-decane, hexadecane, and bitumen using the pressure-decay technique, Energy Fuels 30 (7) (2016) 5232–5239. [33] G. Varet, F. Montel, D. Nasri, J.L. Daridon, Gas solubility measurement in heavy oil and extra heavy oil at vapor extraction (VAPEX) conditions, Energy Fuels 27 (5) (2013) 2528–2535. [34] P. Zanganeh, H. Dashti, S. Ayatollahi, Comparing the effects of CH4, CO2, and N2 injection on asphaltene precipitation and deposition at reservoir condition: A visual and modeling study, Fuel 217 (2018) 633–641. [35] P.G. Bowers, K. Bar-Eli, R.M. Noyes, Unstable supersaturated solutions of gases in liquids and nucleation theory, Faraday Trans. 92 (16) (1996) 2843. [36] N. Maeda, Interfacial nanobubbles and the memory effect of natural gas hydrates, J. Phys. Chem. C 122 (21) (2018) 11399–11406. [37] Y. Guo, W. Xiao, W.F. Pu, J. Hu, J.Z. Zhao, L.J. Zhang, CH4 nanobubbles on the hydrophobic solid–water interface serving as the nucleation sites of methane hydrate, Langmuir 34(34) (2018) 10181–10186. [38] T. Uchida, K. Yamazaki, K. Gohara, Gas nanobubbles as nucleation acceleration in the gas-hydrate memory effect, J. Phys. Chem. C 120 (47) (2016) 26620–26629. |