[1] A. Korchef, H. Saidou, M. Ben Amor, Phosphate recovery through struvite precipitation by CO2 removal: Effect of magnesium, phosphate and ammonium concentrations, J. Hazard. Mater. 186 (1) (2011) 602–613. [2] X.L. Wang, Y.M. Wang, X. Zhang, H.Y. Feng, C.R. Li, T.W. Xu, Phosphate recovery from excess sludge by conventional electrodialysis (CED) and electrodialysis with bipolar membranes (EDBM), Ind. Eng. Chem. Res. 52 (45) (2013) 15896–15904. [3] T. Yan, Y.Y. Ye, H.M. Ma, Y. Zhang, W.S. Guo, B. Du, Q. Wei, D. Wei, H.H. Ngo, A critical review on membrane hybrid system for nutrient recovery from wastewater, Chem. Eng. J. 348 (2018) 143–156. [4] T.L. Zhao, H. Li, Y.R. Huang, Q.Z. Yao, Y. Huang, G.T. Zhou, Microbial mineralization of struvite: Salinity effect and its implication for phosphorus removal and recovery, Chem. Eng. J. 358 (2019) 1324–1331. [5] L. Wei, T.Q. Hong, X.Y. Li, M.Z. Li, Q. Zhang, T.H. Chen, New insights into the adsorption behavior and mechanism of alginic acid onto struvite crystals, Chem. Eng. J. 358 (2019) 1074–1082. [6] S.P. Wei, F. van Rossum, G.J. van de Pol, M.K.H. Winkler, Recovery of phosphorus and nitrogen from human urine by struvite precipitation, air stripping and acid scrubbing: A pilot study, Chemosphere 212 (2018) 1030–1037. [7] H.N. Bischel, S. Schindelholz, M. Schoger, L. Decrey, C.A. Buckley, K.M. Udert, T. Kohn, Bacteria inactivation during the drying of struvite fertilizers produced from stored urine, Environ. Sci. Technol. 50 (23) (2016) 13013–13023. [8] P. Battistoni, P. Pavan, M. Prisciandaro, F. Cecchi, Struvite crystallization: A feasible and reliable way to fix phosphorus in anaerobic supernatants, Water Res. 34 (11) (2000) 3033–3041. [9] L. Pastor, D. Mangin, J. Ferrer, A. Seco, Struvite formation from the supernatants of an anaerobic digestion pilot plant, Bioresour. Technol. 101 (1) (2010) 118–125. [10] M.M. Rahman, Y.H. Liu, J.H. Kwag, C. Ra, Recovery of struvite from animal wastewater and its nutrient leaching loss in soil, J. Hazard. Mater. 186 (2–3) (2011) 2026–2030. [11] D. Kim, H.D. Ryu, M.S. Kim, J. Kim, S.I. Lee, Enhancing struvite precipitation potential for ammonia nitrogen removal in municipal landfill leachate, J. Hazard. Mater. 146 (1–2) (2007) 81–85. [12] W. Moerman, M. Carballa, A. Vandekerckhove, D. Derycke, W. Verstraete, Phosphate removal in agro-industry: Pilot- and full-scale operational considerations of struvite crystallization, Water Res. 43 (7) (2009) 1887–1892. [13] N. Hutnik, A. Stanclik, K. Piotrowski, A. Matynia, Size-dependent growth kinetics of struvite crystals in wastewater with calcium ions, Open Chem. 18 (1) (2020) 196–206. [14] C.M. Mehta, D.J. Batstone, Nucleation and growth kinetics of struvite crystallization, Water Res. 47 (8) (2013) 2890–2900. [15] N. Hutnik, A. Stanclik, K. Piotrowski, A. Matynia, Kinetic conditions of struvite continuous reaction crystallisation from wastewater in presence of aluminium(III) and iron(III) ions, Int. J. Environ. Pollut. 64 (4) (2018) 358. [16] A. Muhmood, S.B. Wu, J.X. Lu, Z. Ajmal, H.Z. Luo, R.J. Dong, Nutrient recovery from anaerobically digested chicken slurry via struvite: Performance optimization and interactions with heavy metals and pathogens, Sci. Total Environ. 635 (2018) 1–9. [17] A. Uysal, Y.D. Yilmazel, G.N. Demirer, The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester, J. Hazard. Mater. 181 (1–3) (2010) 248–254. [18] F. Shokri, P. Ziarati, Z. Mousavi, Removal of selected heavy metals from pharmaceutical effluent by aloe vera L, Biomed. Pharmacol. J. 9 (2) (2016) 705–713. [19] A.A. Rouff, K.M. Juarez, Zinc interaction with struvite during and after mineral formation, Environ. Sci. Technol. 48 (11) (2014) 6342–6349. [20] Z. Zhang, K. Chen, Q. Zhao, M. Huang, X.P. Ouyang, Comparative adsorption of heavy metal ions in wastewater on monolayer molybdenum disulfide, Green Energy Environ. 6 (5) (2021) 751–758. [21] X.G. Liu, Y.Y. Shan, S.T. Zhang, Q.Q. Kong, H. Pang, Application of metal organic framework in wastewater treatment, Green Energy Environ. (2022) [22] D.S. Perwitasari, S. Muryanto, J. Jamari, A.P. Bayuseno, Kinetics and morphology analysis of struvite precipitated from aqueous solution under the influence of heavy metals: Cu2+, Pb2+, Zn2+, J. Environ. Chem. Eng. 6 (1) (2018) 37–43. [23] A.A. Rouff, Sorption of chromium with struvite during phosphorus recovery, Environ. Sci. Technol. 46 (22) (2012) 12493–12501. [24] A.A. Rouff, The use of TG/DSC–FT-IR to assess the effect of Cr sorption on struvite stability and composition, J. Therm. Anal. Calorim. 110 (3) (2012) 1217–1223. [25] H.J. Lin, Y.Q. Lin, D.H. Wang, Y.W. Pang, F.B. Zhang, S.H. Tan, Ammonium removal from digested effluent of swine wastewater by using solid residue from magnesium-hydroxide flue gas desulfurization process, J. Ind. Eng. Chem. 58 (2018) 148–154. [26] K.N. Ohlinger, E. P, T.M. Young, E.D. Schroeder, Kinetics effects on preferential struvite accumulation in wastewater, J. Environ. Eng. 125 (8) (1999) 730–737. [27] A. Ahmadi, S.J. Mousavi, The influence of physicochemical parameters on the bioleaching of zinc sulfide concentrates using a mixed culture of moderately thermophilic microorganisms, Int. J. Miner. Process. 135 (2015) 32–39. [28] Y.H. Ji, R. Paus, A. Prudic, C. Lübbert, G. Sadowski, A novel approach for analyzing the dissolution mechanism of solid dispersions, Pharm. Res. 32 (8) (2015) 2559–2578. [29] Y.H. Ji, A.K. Lesniak, A. Prudic, R. Paus, G. Sadowski, Drug release kinetics and mechanism from PLGA formulations, Aiche J. 62 (11) (2016) 4055–4065. [30] Y. Sun, T. Zhou, G.Y. Chen, Y.H. Ji, X.H. Lu, C.S. Wang, Quantitative analysis of key factors affecting struvite crystal growth rate, CIESC Journal. 2021, 72(11) 5831-5839. (in Chinese) [31] K. Ge, Y.H. Ji, S. Tang, Crystallization kinetics and mechanism of magnesium ammonium phosphate hexahydrate: Experimental investigation and chemical potential gradient model analysis and prediction, Ind. \& Eng. Chem. Res. 59 (2020) 13799–13809. [32] Y.H. Ji, Q. Chen, J.Y. Weng, Nonequilibrium thermodynamic modeling and prediction of the effect of polymer excipients on aspirin crystallization kinetics, CIESC Journal, 2021, 72(1) 508-520. (in Chinese) [33] L. Brečević, J. Garside, On the measurement of crystal size distributions in the micrometer size range, Chem. Eng. Sci. 36 (5) (1981) 867–869. [34] S.K. Chawla, N. Sankarraman, J.H. Payer, Diagnostic spectra for XPS analysis of Cu–O–S–H compounds, J. Electron Spectrosc. Relat. Phenom. 61 (1) (1992) 1–18. [35] D. Xu, X.L. Tan, C.L. Chen, X.K. Wang, Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes, J. Hazard. Mater. 154 (1–3) (2008) 407–416. [36] C.Y. Qiu, F.X. Cai, Y. Wang, Y.J. Liu, Q.X. Wang, C. Zhao, 2-Methylimidazole directed ambient synthesis of zinc-cobalt LDH nanosheets for efficient oxygen evolution reaction, J. Colloid Interface Sci. 565 (2020) 351–359. |