[1] T.A. Nijhuis, M. Makkee, J.A. Moulijn, B.M. Weckhuysen, The production of propene oxide: Catalytic processes and recent developments, Ind. Eng. Chem. Res. 45 (10) (2006) 3447–3459. [2] J.H. Huang, M. Haruta, Gas-phase propene epoxidation over coinage metal catalysts, Res. Chem. Intermed. 38 (1) (2012) 1–24. [3] N. Yap, R.P. Andres, W.N. Delgass, Reactivity and stability of Au in and on TS-1 for epoxidation of propylene with H2 and O2, J. Catal. 226 (1) (2004) 156–170. [4] X. Feng, X.Z. Duan, G. Qian, X.G. Zhou, de Chen, W.K. Yuan, Au nanoparticles deposited on the external surfaces of TS-1: Enhanced stability and activity for direct propylene epoxidation with H2 and O2, Appl. Catal. B Environ. 150-151 (2014) 396–401. [5] W.S. Lee, L.C. Lai, M.C. Akatay, E.A. Stach, F.H. Ribeiro, W.N. Delgass, Probing the gold active sites in Au/TS-1 for gas-phase epoxidation of propylene in the presence of hydrogen and oxygen, J. Catal. 296 (2012) 31–42. [6] C.X. Qi, J.H. Huang, S.Q. Bao, H.J. Su, T. Akita, M. Haruta, Switching of reactions between hydrogenation and epoxidation of propene over Au/Ti-based oxides in the presence of H2 and O2, J. Catal. 281 (1) (2011) 12–20. [7] X. Feng, J. Yang, X.Z. Duan, Y.Q. Cao, B.X. Chen, W.Y. Chen, D. Lin, G. Qian, D. Chen, C.H. Yang, X.G. Zhou, Enhanced catalytic performance for propene epoxidation with H2 and O2 over bimetallic Au–Ag/uncalcined titanium silicate-1 catalysts, ACS Catal. 8 (9) (2018) 7799–7808. [8] T. Ishihara, Y. Ohura, S. Yoshida, Y. Hata, H. Nishiguchi, Y. Takita, Synthesis of hydrogen peroxide by direct oxidation of H2 with O2 on Au/SiO2 catalyst, Appl. Catal. A Gen. 291 (1–2) (2005) 215–221. [9] X. Feng, X.Z. Duan, G. Qian, X.G. Zhou, de Chen, W.K. Yuan, Insights into size-dependent activity and active sites of Au nanoparticles supported on TS-1 for propene epoxidation with H2 and O2, J. Catal. 317 (2014) 99–104. [10] B. Chowdhury, J.J. Bravo-Suárez, N. Mimura, Lu, K.K. Bando, S. Tsubota, M. Haruta, In situ UV–vis and EPR study on the formation of hydroperoxide species during direct gas phase propylene epoxidation over Au/Ti-SiO2 catalyst, J. Phys. Chem. B 110 (46) (2006) 22995–22999. [11] J.J. Bravo-Suárez, K.K. Bando, J.Q. Lu, M. Haruta, T. Fujitani, T. Oyama, Transient technique for identification of true reaction intermediates: Hydroperoxide species in propylene epoxidation on gold/titanosilicate catalysts by X-ray absorption fine structure spectroscopy, J. Phys. Chem. C 112 (4) (2008) 1115–1123. [12] J.J. Ji, Z. Lu, Y. Lei, C. Turner, Theoretical studies on the direct propylene epoxidation using gold-based catalysts: A mini-review, Catalysts 8 (10) (2018) 421. [13] A. Roldan, D. Torres, J.M. Ricart, F. Illas, On the effectiveness of partial oxidation of propylene by gold: A density functional theory study, J. Mol. Catal. A Chem. 306 (1–2) (2009) 6–10. [14] Y. Tang, Z. Zhang, M. Lu, B. Chen, W. Fu, J. Gan, G. Qian, X. Duan, X. Zhou, Site-dependent activity and selectivity of H2O2 formation from H2 and O2 over Au-based catalysts, Ind. Eng. Chem. Res, 58 (33) (2019)15119-15126. [15] G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B Condens. Matter 47 (1) (1993) 558–561. [16] G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, Phys. Rev. B Condens. Matter 49 (20) (1994) 14251–14269. [17] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1) (1996) 15–50. [18] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B Condens. Matter 54 (16) (1996) 11169–11186. [19] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (3) (1999) 1758–1775. [20] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (18) (1996) 3865–3868. [21] P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B Condens. Matter 50 (24) (1994) 17953–17979. [22] M. Methfessel, A.T. Paxton, High-precision sampling for Brillouin-zone integration in metals, Phys. Rev. B Condens. Matter 40 (6) (1989) 3616–3621. [23] D. Panayotov, M. McEntee, S. Burrows, D. Driscoll, W.J. Tang, M. Neurock, J. Morris, Infrared studies of propene and propene oxide adsorption on nanoparticulate Au/TiO2, Surf. Sci. 652 (2016) 172–182. [24] D.M. Driscoll, W.J. Tang, S.P. Burrows, D.A. Panayotov, M. Neurock, M. McEntee, J.R. Morris, Binding sites, geometry, and energetics of propene at nanoparticulate Au/TiO2, J. Phys. Chem. C 121 (3) (2017) 1683–1689. [25] K.A. Davis, D.W. Goodman, Propene adsorption on clean and oxygen-covered Au(111) and Au(100) surfaces, J. Phys. Chem. B 104 (35) (2000) 8557–8562. [26] M. Boronat, A. Corma, Oxygen activation on gold nanoparticles: Separating the influence of particle size, particle shape and support interaction, Dalton Trans. 39 (36) (2010) 8538–8546. [27] E. Bus, J.T. Miller, J.A. van Bokhoven, Hydrogen chemisorption on Al2O3-supported gold catalysts, J. Phys. Chem. B 109 (30) (2005) 14581–14587. [28] E. Quinet, L. Piccolo, F. Morfin, P. Avenier, F. Diehl, V. Caps, J.L. Rousset, On the mechanism of hydrogen-promoted gold-catalyzed CO oxidation, J. Catal. 268 (2) (2009) 384–389. [29] J.H. Huang, T. Akita, J. Faye, T. Fujitani, T. Takei, M. Haruta, Propene epoxidation with dioxygen catalyzed by gold clusters, Angew. Chem. Int. Ed Engl. 48 (42) (2009) 7862–7866. [30] S.M. Lang, T.M. Bernhardt, R.N. Barnett, B. Yoon, U. Landman, Hydrogen-promoted oxygen activation by free gold cluster cations, J. Am. Chem. Soc. 131 (25) (2009) 8939–8951. [31] D. Torres, N. Lopez, F. Illas, R.M. Lambert, Low-basicity oxygen atoms: A key in the search for propylene epoxidation catalysts, Angew. Chem. Int. Ed Engl. 46 (12) (2007) 2055–2058. [32] L.V. Moskaleva, Theoretical mechanistic insights into propylene epoxidation on Au-based catalysts: Surface O versus OOH as oxidizing agents, Catal. Today 278 (2016) 45–55. [33] B. Xing, X.Y. Pang, G.C. Wang, C-H bond activation of methane on clean and oxygen pre-covered metals: A systematic theoretical study, J. Catal. 282 (1) (2011) 74–82. [34] D. Hibbitts, M. Neurock, Promotional effects of chemisorbed oxygen and hydroxide in the activation of C-H and O-H bonds over transition metal surfaces, Surf. Sci. 650 (2016) 210–220. [35] J. Wang, G.C. Wang, Promotion effect of methane activation on Cu(111) by the surface-active oxygen species: A combination of DFT and ReaxFF study, J. Phys. Chem. C 122 (30) (2018) 17338–17346. [36] G.B. Bouka-Pivoteau, M. N’dollo, B.R. Malonda-Boungou, B. Maloumbi, P.S. Moussounda, T. Dintzer, Dft study of methyl (CH3) and hydroxyl (oh) adsorption on a gold (001) surface, Surf. Rev. Lett. 26 (5) (2019) 1850198. [37] J.J. Ji, Z. Lu, Y. Lei, C.H. Turner, Mechanistic insights into the direct propylene epoxidation using Au nanoparticles dispersed on TiO2/SiO2, Chem. Eng. Sci. 191 (2018) 169–182. [38] X.Y. Deng, B.K. Min, X.Y. Liu, C.M. Friend, Partial oxidation of propene on oxygen-covered Au(111), J. Phys. Chem. B 110 (32) (2006) 15982–15987. |