[1] J. Popp, S. Kovács, J. Oláh, Z. Divéki, E. Balázs, Bioeconomy: Biomass and biomass-based energy supply and demand, N. Biotechnol. 60 (2021) 76–84. [2] C. Xuejun, D. Xiang, X. Keyu, State-of-the-art review of lignin and its derivatives on the soil properties modification, Soil Engineering and Foundation 35(2) (2021) 156. [3] W. Schutyser, T. Renders, S. van den Bosch, S.F. Koelewijn, G.T. Beckham, B.F. Sels, Chemicals from lignin: An interplay of lignocellulose fractionation, depolymerisation, and upgrading, Chem. Soc. Rev. 47 (3) (2018) 852–908. [4] Z. Sun, B. Fridrich, A. de Santi, S. Elangovan, K. Barta, Bright side of lignin depolymerization: Toward new platform chemicals, Chem. Rev. 118 (2) (2018) 614–678. [5] C.F. Zhang, F. Wang, Catalytic lignin depolymerization to aromatic chemicals, Acc. Chem. Res. 53 (2) (2020) 470–484. [6] X.D. Liu, Z.C. Jiang, S.S. Feng, H. Zhang, J.M. Li, C.W. Hu, Catalytic depolymerization of organosolv lignin to phenolic monomers and low molecular weight oligomers, Fuel 244 (2019) 247–257. [7] S. Sethupathy, G. Murillo Morales, L. Gao, H. Wang, B. Yang, J. Jiang, J. Sun, D. Zhu, Lignin valorization: Status, challenges and opportunities, Bioresour. Technol. 347 (2022) 126696. [8] Q. Lu, W.L. Xie, B. Hu, J. Liu, W. Zhao, B. Zhang, T.P. Wang, A novel interaction mechanism in lignin pyrolysis: Phenolics-assisted hydrogen transfer for the decomposition of the β-O-4 linkage, Combust. Flame 225 (2021) 395–405. [9] S. Hong, X.J. Shen, Z.M. Xue, Z.H. Sun, T.Q. Yuan, Structure–function relationships of deep eutectic solvents for lignin extraction and chemical transformation, Green Chem. 22 (21) (2020) 7219–7232. [10] S. Bertella, J.S. Luterbacher, Lignin functionalization for the production of novel materials, Trends Chem. 2 (5) (2020) 440–453. [11] R.C. Sun, Lignin source and structural characterization, ChemSusChem 13 (17) (2020) 4385–4393. [12] X.H. Zhang, W.K. Jiang, H. Ma, S.B. Wu, Relationship between the formation of oligomers and monophenols and lignin structure during pyrolysis process, Fuel 276 (2020) 118048. [13] Q. Zeng, Z.Y. Du, L.G. Luo, Selective preparation of monomers from hydrotreatment of lignin using isopropanol over Ru-Pd/HZSM-5 catalysts, Biomass Convers. Biorefinery (2021) 1–10. [14] Y. Xu, P.R. Chen, W. Lv, C.G. Wang, L.L. Ma, Q. Zhang, Hydrogenolysis of organosolv hydrolyzed lignin over high-dispersion Ni/Al-SBA-15 catalysts for phenolic monomers, Chin. J. Chem. Eng. 32 (2021) 307–314. [15] B. Du, C. Liu, X. Wang, Y. Han, Y. Guo, H. Li, J. Zhou, Renewable lignin-based carbon nanofiber as Ni catalyst support for depolymerization of lignin to phenols in supercritical ethanol/water, Renewable Energy 147 (2020) 1331-1339. [16] Y. Han, C. Liu, X.C. Kong, X. Wang, Y.Y. Fan, M. Lei, M. Li, R. Xiao, L.L. Ma, Could preoxidation always promote the subsequent hydroconversion of lignin? Two counterexamples catalyzed by Cu/CuMgAlOx in supercritical ethanol, Bioresour. Technol. 332 (2021) 125142. [17] B.Y. Tang, W.Z. Li, X. Zhang, B.K. Zhang, H. Zhang, C.S. Li, Depolymerization of Kraft lignin to liquid fuels with MoS2 derived oxygen-vacancy-enriched MoO3 in a hydrogen-donor solvent system, Fuel 324 (2022) 124674. [18] X. Zhang, W.Z. Li, J.D. Wang, B.K. Zhang, G. Guo, C.C. Shen, Y.H. Jiang, Depolymerization of Kraft lignin into liquid fuels over a WO3 modified acid-base coupled hydrogenation catalyst, Fuel 323 (2022) 124428. [19] P.R. Chen, Q. Zhang, R.Y. Shu, Y. Xu, L.L. Ma, T.J. Wang, Catalytic depolymerization of the hydrolyzed lignin over mesoporous catalysts, Bioresour. Technol. 226 (2017) 125–131. [20] Z. Yang, X.Y. Wei, M. Zhang, Z.M. Zong, Catalytic hydroconversion of aryl ethers over a nickel catalyst supported on acid-modified zeolite 5A, Fuel Process. Technol. 177 (2018) 345–352. [21] C. Zhu, J.P. Cao, X.Y. Zhao, T. Xie, J. Ren, X.Y. Wei, Mechanism of Ni-catalyzed selective CO cleavage of lignin model compound benzyl phenyl ether under mild conditions, J. Energy Inst. 92 (1) (2019) 74–81. [22] S. Rautiainen, D. Di Francesco, S.N. Katea, G. Westin, D.N. Tungasmita, J.S.M. Samec, Lignin valorization by cobalt-catalyzed fractionation of lignocellulose to yield monophenolic compounds, ChemSusChem 12 (2) (2019) 404–408. [23] J.J. Chen, D.D. Wang, X.Y. Lu, H.Q. Guo, P.C. Xiu, Y. Qin, C.Z. Xu, X.L. Gu, Effect of cobalt(II) on acid-modified attapulgite-supported catalysts on the depolymerization of alkali lignin, Ind. Eng. Chem. Res. 61 (4) (2022) 1675–1683. [24] H.J. Guo, H.R. Zhang, F. Peng, H.J. Yang, L. Xiong, C. Wang, C. Huang, X.D. Chen, L.L. Ma, Effects of Cu/Fe ratio on structure and performance of attapulgite supported CuFeCo-based catalyst for mixed alcohols synthesis from syngas, Appl. Catal. A Gen. 503 (2015) 51–61. [25] Y.Z. Wang, X. Li, T.T. Lv, R.F. Wu, Y.X. Zhao, Effect of precipitants on the catalytic performance of Pd–Cu/attapulgite clay catalyst for CO oxidation at room temperature and in humid circumstances, React. Kinetics Mech. Catal. 124 (1) (2018) 203–216. [26] W.J. Zhao, X. Li, H. Dang, R.F. Wu, Y.Z. Wang, Y.X. Zhao, Effect of Sn addition on the catalytic performance of a Pd–Cu/attapulgite catalyst for room-temperature CO oxidation under moisture-rich conditions, React. Kinetics Mech. Catal. 134 (2) (2021) 759–775. [27] C.F. Liang, Z.R. Gao, H.Q. Lian, X.L. Li, S. Zhang, Q. Liu, D.H. Dong, X. Hu, Impacts of metal loading in Ni/attapulgite on distribution of the alkalinity sites and reaction intermediates in CO2 methanation reaction, Int. J. Hydrog. Energy 45 (32) (2020) 16153–16160. [28] Z.R. Yan, Q.H. Liu, L.X. Liang, O.Y. Jing, Surface hydroxyls mediated CO2 methanation at ambient pressure over attapulgite-loaded Ni-TiO2 composite catalysts with high activity and reuse ability, J. CO2 Util. 47 (2021) 101489. [29] Y.S. Wang, M.Q. Chen, X.J. Li, Z.L. Yang, T. Liang, Z.S. Zhou, Y. Cao, Hydrogen production via steam reforming of ethylene glycol over Attapulgite supported nickel catalysts, Int. J. Hydrog. Energy 43 (45) (2018) 20438–20450. [30] Y.S. Wang, N. Li, M.Q. Chen, D.F. Liang, C. Li, Q. Liu, Z.L. Yang, J. Wang, Glycerol steam reforming over hydrothermal synthetic Ni-Ca/attapulgite for green hydrogen generation, Chin. J. Chem. Eng. 48 (2022) 176–190. [31] M.Q. Chen, G.W. Sun, Y.S. Wang, D.F. Liang, C. Li, J. Wang, Q. Liu, Steam reforming of methanol for hydrogen production over attapulgite-based zeolite-supported Cu-Zr catalyst, Fuel 314 (2022) 122733. [32] H.J. Guo, H.R. Zhang, X.F. Chen, L.Q. Zhang, C. Huang, H.L. Li, F. Peng, Q.L. Huang, L. Xiong, X.P. Ouyang, X.D. Chen, X.Q. Qiu, Catalytic upgrading of biopolyols derived from liquefaction of wheat straw over a high-performance and stable supported amorphous alloy catalyst, Energy Convers. Manag. 156 (2018) 130–139. [33] F.L. Yang, J.S. Weng, J.J. Ding, Z.Y. Zhao, L.Z. Qin, F.F. Xia, Effective conversion of saccharides into hydroxymethylfurfural catalyzed by a natural clay, attapulgite, Renew. Energy 151 (2020) 829–836. [34] Y. Shen, Y.R. Kang, J.K. Sun, C. Wang, B. Wang, F. Xu, R.C. Sun, Efficient production of 5-hydroxymethylfurfural from hexoses using solid acid SO42-/In2O3-ATP in a biphasic system, Chin. J. Catal. 37 (8) (2016) 1362–1368. [35] B.A. Dar, S. Khalid, T.A. Wani, M.A. Mir, M. Farooqui, Ceria-based mixed oxide supported CuO: An efficient heterogeneous catalyst for conversion of cellulose to sorbitol, Green Sustain. Chem. 5 (1) (2015) 15–24. [36] J. Grams, M. Niewiadomski, R. Ryczkowski, A.M. Ruppert, W. Kwapiński, Activity and characterization of Ni catalyst supported on CeO2-ZrO2 for thermo-chemical conversion of cellulose, Int. J. Hydrog. Energy 41 (20) (2016) 8679–8687. [37] S.M. Schimming, O.D. LaMont, M. König, A.K. Rogers, A.D. D'Amico, M.M. Yung, C. Sievers, Hydrodeoxygenation of guaiacol over ceria-zirconia catalysts, ChemSusChem 8 (12) (2015) 2073–2083. [38] C.Q. Cao, Y.P. Xie, L.H. Li, W.W. Wei, H. Jin, S. Wang, W.H. Li, Supercritical water gasification of lignin and cellulose catalyzed with co-precipitated CeO2–ZrO2, Energy Fuels 35 (7) (2021) 6030–6039. [39] H. Song, L.L. Zhao, N. Wang, Rare earth metals modified Ni-S2O82 -/ZrO2-Al2O3 catalysts for n-pentane isomerization, Chin. J. Chem. Eng. 25 (1) (2017) 74–78. [40] B.W. Wang, W.X. Yu, W.H. Wang, Z.H. Li, Y. Xu, X.B. Ma, Effect of boron addition on the MoO3/CeO2-Al2O3 catalyst in the sulfur-resistant methanation, Chin. J. Chem. Eng. 26 (3) (2018) 509–513. [41] W. Tan, J. Wang, Y.D. Cai, L.L. Li, S.H. Xie, F. Gao, F.D. Liu, L. Dong, Molybdenum oxide as an efficient promoter to enhance the NH3-SCR performance of CeO2-SiO2 catalyst for NOx removal, Catal. Today 397-399 (2022) 475–483. [42] S.S. Alterary, M.F. El-Tohamy, Advanced functionalized CeO2/Al2O3 nanocomposite sensor for determination of opioid medication tramadol hydrochloride in pharmaceutical formulations, Nanomaterials (Basel) 12 (8) (2022) 1373. [43] C. Li, R. Goei, Y.F. Li, J. Shi, F. Liu, B. Li, Y.M. Gao, Y.H. Li, S.Z. Li, A.I.Y. Tok, Effect of chromium on erosion-corrosion properties of ZrO2-Al2O3 particles reinforced Fe-based composites in artificial seawater slurries, Corros. Sci. 198 (2022) 110138. [44] X.X. Zhang, X.T. Cheng, Y. Si, J.Y. Yu, B. Ding, Elastic and highly fatigue resistant ZrO2-SiO2 nanofibrous aerogel with low energy dissipation for thermal insulation, Chem. Eng. J. 433 (2022) 133628. [45] H.J. Guo, Q.L. Li, H.R. Zhang, F. Peng, L. Xiong, S.M. Yao, C. Huang, X.D. Chen, CO2 hydrogenation over acid-activated Attapulgite/Ce0.75Zr0.25O2 nanocomposite supported Cu-ZnO based catalysts, Mol. Catal. 476 (2019) 110499. [46] X.Y. Lu, D.D. Wang, H.Q. Guo, P.C. Xiu, J.J. Chen, Y. Qin, H.M. Robin, C.Z. Xu, X.G. Zhang, X.L. Gu, Insights into depolymerization pathways and mechanism of alkali lignin over a Ni1.2-ZrO2/WO3/γ-Al2O3 catalyst, Chin. J. Chem. Eng. 48 (2022) 191–201. [47] K. Sing, D. Everett, R. Haul, L. Moscou, R. Pierotti, J. Rouquerol, T. Siemieniewska, IUPAC (Recommendations 1984), Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem 57(4) (1985) 603-619. [48] H.J. Guo, H.R. Zhang, F. Peng, H.J. Yang, L. Xiong, C. Huang, C. Wang, X.D. Chen, L.L. Ma, Mixed alcohols synthesis from syngas over activated palygorskite supported Cu-Fe-Co based catalysts, Appl. Clay Sci. 111 (2015) 83–89. [49] L. Gao, C.T. Li, J. Zhang, X.Y. Du, S.H. Li, J.W. Zeng, Y.Y. Yi, G.M. Zeng, Simultaneous removal of NO and Hg0 from simulated flue gas over CoOx-CeO2 loaded biomass activated carbon derived from maize straw at low temperatures, Chem. Eng. J. 342 (2018) 339–349. [50] D. Shi, H. Yang, X.X. Xue, Preparation, characterization and antibacterial properties of cobalt doped titania nanomaterials, Chin. J. Chem. Eng. 28 (5) (2020) 1474–1482. [51] C. Wang, C.H. Zhang, W.C. Hua, Y.L. Guo, G.Z. Lu, S. Gil, A. Giroir-Fendler, Catalytic oxidation of vinyl chloride emissions over Co-Ce composite oxide catalysts, Chem. Eng. J. 315 (2017) 392–402. [52] N. Jiang, J. Hu, J. Li, K.F. Shang, N. Lu, Y. Wu, Plasma-catalytic degradation of benzene over Ag-Ce bimetallic oxide catalysts using hybrid surface/packed-bed discharge plasmas, Appl. Catal. B Environ. 184 (2016) 355–363. [53] M.L. Huang, S.N. Wang, L. Li, H.L. Zhang, Z.H. Shi, Y.Q. Chen, Effect of high temperature pretreatment on the thermal resistance properties of Pd/CeO2/Al2O3 close-coupled catalysts, J. Rare Earths 35 (2) (2017) 149–157. [54] Y. Zhou, J. Deng, L. Xiong, J.L. Wang, S.D. Yuan, H.L. Zhang, Y.Q. Chen, Synthesis and study of nanostructured Ce-Zr-La-RE-O (RE = Y, Nd and Pr) quaternary solid solutions and their supported three-way catalysts, Mater. Des. 130 (2017) 149–156. [55] V. Cristaudo, K. Baert, P. Laha, M. Lyn Lim, E. Brown-Tseng, H. Terryn, T. Hauffman, A combined XPS/ToF-SIMS approach for the 3D compositional characterization of Zr-based conversion of galvanized steel, Appl. Surf. Sci. 562 (2021) 150166. [56] M.M. Antunes, S. Lima, P. Neves, A.L. Magalhães, E. Fazio, F. Neri, M.T. Pereira, A.F. Silva, C.M. Silva, S.M. Rocha, M. Pillinger, A. Urakawa, A.A. Valente, Integrated reduction and acid-catalysed conversion of furfural in alcohol medium using Zr, Al-containing ordered micro/mesoporous silicates, Appl. Catal. B Environ. 182 (2016) 485–503. [57] A.J. Xie, X.M. Zhou, X.Y. Huang, L. Ji, W.T. Zhou, S.P. Luo, C. Yao, Cerium-loaded MnOx/attapulgite catalyst for the low-temperature NH3-selective catalytic reduction, J. Ind. Eng. Chem. 49 (2017) 230–241. [58] W. Nabgan, T.A. Tuan Abdullah, R. Mat, B. Nabgan, Y. Gambo, S. Triwahyono, Influence of Ni to Co ratio supported on ZrO2 catalysts in phenol steam reforming for hydrogen production, Int. J. Hydrog. Energy 41 (48) (2016) 22922–22931. [59] Y.K. Li, Nishu, D. Yellezuome, C. Li, R.H. Liu, Deactivation mechanism and regeneration effect of bi-metallic Fe-Ni/ZSM-5 catalyst during biomass catalytic pyrolysis, Fuel 312 (2022) 122924. [60] Q. Bao, Y.F. Hu, X.F. Liu, G.L. Wu, P.L. Sun, J.P. Ge, M. Xu, Coking and deactivation behavior of Ba–La-modified alumina in the aldol condensation of methyl acetate with formaldehyde: Effect of the reactant composition, Energy Fuels 36 (2) (2022) 978–990. [61] Y.Z. Wang, S.S. Zhu, X.Q. Zheng, J.C. Lu, Y. Zhao, S.F. He, H.H. Lu, Y.M. Luo, Tuning metal-support interaction and surface acidic sites of Ni/Al 2 O 3 by dopamine modification for glycerol steam reforming, ChemCatChem 14 (1) (2022): e202101150. [62] Q. Yu, Y.H. Guo, X.X. Wu, Z.J. Yang, H. Wang, Q.F. Ge, X.L. Zhu, Ketonization of propionic acid on lewis acidic Zr-beta zeolite with improved stability and selectivity, ACS Sustainable Chem. Eng. 9 (23) (2021) 7982–7992. [63] D. Wu, Z. Hu, X.Q. Zhang, C.R. Zhang, K. Sun, S.X. Lu, Remarkable lignin degradation in paper wastewaters over Fe2O3/γ-Al2O3 catalysts using the catalytic wet peroxide oxidation method, RSC Adv. 7 (60) (2017) 37487–37494. [64] T. Xie, J.P. Cao, C. Zhu, X.Y. Zhao, M. Zhao, Y.P. Zhao, X.Y. Wei, Selective cleavage of CO bond in benzyl phenyl ether over Pd/AC at room temperature, Fuel Process. Technol. 188 (2019) 190–196. [65] L.P. Shao, Q.L. Zhang, T.T. You, X.M. Zhang, F. Xu, Microwave-assisted efficient depolymerization of alkaline lignin in methanol/formic acid media, Bioresour. Technol. 264 (2018) 238–243. [66] P.A. Harris, R. Taylor, B.L. Minor, V. Elliott, M. Fernandez, L. O'Neal, L. McLeod, G. Delacqua, F. Delacqua, J. Kirby, S.N. Duda, The REDCap consortium: Building an international community of software platform partners, J. Biomed. Inform. 95 (2019) 103208. [67] I. Kristianto, S.O. Limarta, H. Lee, J.M. Ha, D.J. Suh, J. Jae, Effective depolymerization of concentrated acid hydrolysis lignin using a carbon-supported ruthenium catalyst in ethanol/formic acid media, Bioresour. Technol. 234 (2017) 424–431. [68] S.Y. Park, C.Y. Hong, H.S. Jeong, S.Y. Lee, J.W. Choi, I.G. Choi, Improvement of lignin oil properties by combination of organic solvents and formic acid during supercritical depolymerization, J. Anal. Appl. Pyrolysis 121 (2016) 113–120. [69] S.H. Huang, N. Mahmood, Y.S. Zhang, M. Tymchyshyn, Z.S. Yuan, C.B. Xu, Reductive de-polymerization of kraft lignin with formic acid at low temperatures using inexpensive supported Ni-based catalysts, Fuel 209 (2017) 579–586. [70] C.F. Zhang, H.J. Li, J.M. Lu, X.C. Zhang, K.E. MacArthur, M. Heggen, F. Wang, Promoting lignin depolymerization and restraining the condensation via an oxidation–hydrogenation strategy, ACS Catal. 7 (5) (2017) 3419–3429. [71] R.Y. Shu, Q. Zhang, L.L. Ma, Y. Xu, P.R. Chen, C.G. Wang, T.J. Wang, Insight into the solvent, temperature and time effects on the hydrogenolysis of hydrolyzed lignin, Bioresour. Technol. 221 (2016) 568–575. [72] C.W. Lahive, P.J. Deuss, C.S. Lancefield, Z. Sun, D.B. Cordes, C.M. Young, F. Tran, A.M. Slawin, J.G. de Vries, P.C. Kamer, N.J. Westwood, K. Barta, Advanced model compounds for understanding acid-catalyzed lignin depolymerization: Identification of renewable aromatics and a lignin-derived solvent, J. Am. Chem. Soc. 138 (28) (2016) 8900–8911. [73] A. Kumar, B. Biswas, R. Kaur, B.B. Krishna, B. Thallada, Oxidative valorisation of lignin into valuable phenolics: Effect of acidic and basic catalysts and reaction parameters, Bioresour. Technol. 338 (2021) 125513. |