[1] G.K. Viswanathan, D. Shwartz, Y. Losev, E. Arad, C. Shemesh, E. Pichinuk, H. Engel, A. Raveh, R. Jelinek, I. Cooper, F. Gosselet, E. Gazit, D. Segal, Purpurin modulates tau-derived VQIVYK fibrillization and ameliorates Alzheimer’s disease-like symptoms in animal model, Cell Mol. Life Sci. 77 (14) (2020) 2795-2813. [2] R. Leon, A.G. Garcia, J. Marco-Contelles, Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer's disease, Med. Res. Rev. 33 (1) (2013) 139-189. [3] Y. Liang, W. Wang, Y. Sun, X. Dong, Insights into the cross-amyloid aggregation of Aβ40 and its N-terminal truncated peptide Aβ11-40 affected by epigallocatechin gallate, Chinese J. Chem. Eng. 45 (2022) 284-293. [4] L. Kruger, E.M. Mandelkow, Tau neurotoxicity and rescue in animal models of human tauopathies, Curr. Opin. Neurobiol. 36 (2016) 52-58. [5] Y. Wang, E. Mandelkow, Tau in physiology and pathology, Nat. Rev. Neurosci. 17 (2016) 22-35. [6] Y. Zhang, Y. Tang, D. Zhang, Y. Liu, J. He, Y. Chang, J. Zheng, Amyloid cross-seeding between Aβ and hIAPP in relation to the pathogenesis of Alzheimer and type 2 diabetes, Chinese J. Chem. Eng. 30 (2021) 225-235. [7] E.H. Kellogg, N.M.A. Hejab, S. Poepsel, K.H. Downing, F. DiMaio, E. Nogales, Near-atomic model of microtubule-tau interactions, Science 360 (6394) (2018) 1242-1246. [8] H.L. Liu, H.Y. Zhong, Z.R. Xu, Q.Q. Zhang, S.J.A. Shah, H.X. Liu, X.J. Yao, The misfolding mechanism of the key fragment R3 of tau protein: a combined molecular dynamics simulation and Markov state model study, Phys. Chem. Chem. Phys. 22 (19) (2020) 10968-10980. [9] H. Kadavath, M. Jaremko, A. Jaremko, J. Biernat, E. Mandelkow, M. Zweckstetter, Folding of the tau protein on microtubules, Angew. Chem. Int. Ed. 54 (35) (2015) 10347-10351. [10] L. Rani, J. Mittal, S.S. Mallajosyula, Effect of phosphorylation and O-GlcNAcylation on proline-rich domains of tau, J. Phys. Chem. B 124 (10) (2020) 1909-1918. [11] A.V. Rojas, G.G. Maisuradze, H.A. Scheraga, Dependence of the formation of tau and Aβ peptide mixed aggregates on the secondary structure of the N-terminal region of Aβ, J. Phys. Chem. B 122 (28) (2018) 7049-7056. [12] M.N.N. Vieira, L.F. Germano, L.M.F. Saraiva, A. Sebollela, A.M. Martinez, J.C. Houzel, F.G.D. Felice, S.T. Ferreira, Soluble oligomers from a non-disease related protein mimic Aβ-induced tau hyperphosphorylation and neurodegeneration, Neurochem. 103 (2) (2007) 736-748. [13] K. Leroy, A. Bretteville, K. Schindowski, E. Gilissen, M. Authelet, R.D.Z. Decker, Z. Yilmaz, L. Buee, J.P. Brion, Early axonopathy preceding neurofibrillary tangles in mutant tau transgenic mice, Am. J. Pathol. 171 (3) (2007) 976-992. [14] C. Ballatore, J.Q. Trojanowski, Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders, Nat. Rev. Neurosci. 8 (9) (2007) 663–672. [15] K. Iqbal, F. Liu, C. Gong, Tau and neurodegenerative disease: the story so far, Nat. Rev. Neurol. 12 (1) (2016) 15-27. [16] B. Falcon, W.J. Zhang, A.G. Murzin, G. Murshudov, H.J. Garringer, R. Vidal, R.A. Crowther, B. Ghetti, S.H.W. Scheres, M. Goedert, Structures of filaments from Pick’s disease reveal a novel tau protein fold, Nature 561 (7721) (2018) 137-140. [17] B. Falcon, J. Zivanov, W. Zhang, A.G. Murzin, H.J. Garringer, R. Vidal, R.A. Crowther, K.L. Newell, B. Ghetti, M. Goedert, S.H.W. Scheres, Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules, Nature 568 (7752) (2019) 420-423. [18] J.S. Rane, P. Bhaumik, D. Panda, Curcumin inhibits tau aggregation and disintegrates preformed tau filaments in vitro, J. Alzheimers Dis. 60 (3) (2017) 999-1014. [19] H.J. Wobst, A. Sharma, M.I. Diamond, E.E. Wanker, J. Bieschke, The green tea polyphenol (-)-epigallocatechin gallate prevents the aggregation of tau protein into toxic oligomers at substoichiometric ratios, FEBS. Lett. 589 (1) (2015) 77-83. [20] R.A. Rifaai, S.A. Mokhemer, E.A. Saber, S.A.A. El-Aleem, N.F.G. El-Tahawy, Neuroprotective effect of quercetin nanoparticles: a possible prophylactic and therapeutic role in Alzheimer’s disease, J. Chem. Neuroanat. 107 (2020) 101795. [21] Z. Zhou, Y.Q. Gu, H.X. Wang, Artificial chiral interfaces against amyloid-β peptide aggregation: Research progress and challenges, ACS. Chem. Neurosci. 12 (22) (2021) 4236-4248. [22] T. Lee, H. Kwon, B. Bang, Y.S. Lee, M. Park, K. Moon, T. Kim, K. Lee, H. Moon, Y.S. Cho, Grape seed proanthocyanidin extract attenuates allergic inflammation in murine models of asthma, J. Clin. Immunol. 32 (6) (2012) 1292-1304. [23] Z. Zdunczyk, S. Frejnagel, M. Wróblewska, J. Juśkiewicz, J. Oszmiański, I. Estrella, Biological activity of polyphenol extracts from different plant sources, Food Res. Int. 35 (2-3) (2002) 183-186. [24] B.M.S. Erben, H.S. Benjamin, M.D. Lau, Pycnogenol inhibits generation of inflammatory mediators in macrophages, Nutr. Res. 20 (2) (2000) 249-259. [25] W.G. Li, X.Y. Zhang, Y.J. Wu, X. Tian, Anti-inflammatory effect and mechanism of proanthocyanidins from grape seeds, Acta. Pharmacol. Sin. 22 (12) (2001) 1117-1120. [26] Y. Ding, X.Q. Dai, Z.F. Zhang, Y.F. Jiang, X.T. Ma, X.X. Cai, Y. Li, Proanthocyanidins protect against early diabetic peripheral neuropathy by modulating endoplasmic reticulum stress, J. Nutr. Biochem. 25 (7) (2014) 765-772. [27] C.M. Liu, J.Q. Ma, S.S. Liu, G.H. Zheng, Z.J. Feng, J.M. Sun, Proanthocyanidins improves lead-induced cognitive impairments by blocking endoplasmic reticulum stress and nuclear factor-κB-mediated inflammatory pathways in rats, Food Chem. Toxicol. 72 (2014) 295-302. [28] S.S. Zhou, H.L. Zou, C.J. Liu, M.J. Zang, T. Liu, Combining deep neural networks for protein secondary structure prediction, IEEE Access 8 (2020) 84362-84370. [29] X. Li, T. Dai, P. Hu, C. Zhang, J. Chen, C. Liu, T. Li, Characterization the non-covalent interactions between beta lactoglobulin and selected phenolic acids, Food Hydrocoll. 105 (2020) 105761. [30] K. Sarkar, S. Sarkar, R.K. Das, Screening of drug efficacy of rosmarinic acid derivatives as aurora kinase inhibitors by computer-aided drug design method, Curr. Comput-Aid. Drug Design 17 (5) (2021) 627-646. [31] C.I. Bayly, P. Cieplak, W. Cornell, P.A. Kollman, A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model, J. Phys. Chem. 97 (40) (1993) 10269-10280. [32] J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case, Development and testing of a general amber force field, J. Comput. Chem. 25 (9) (2004) 1157-1174. [33] J.A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K.E. Hauser, C. Simmerling, ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB, J. Chem. Theory Comput. 11 (8) (2015) 3696-3713. [34] B. Hess, P-LINCS: A parallel linear constraint solver for molecular simulation, J. Chem. Theory Comput. 4 (1) (2008) 116-122. [35] G. Bussi, D. Donadio, M. Parrinello, Canonical sampling through velocity rescaling, J. Chem. Phys. 126 (1) (2007) 14101. [36] M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess, E. Lindahl, GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX 1-2 (2015) 19-25. [37] M.F. Adasme, K.L. Linnemann, S.N. Bolz, F. Kaiser, S. Salentin, V.J. Haupt, M. Schroeder, PLIP 2021: expanding the scope of the protein–ligand interaction profiler to DNA and RNA, Nucleic Acids Res. 49 (W1) (2021) 530-534. [38] J. Zhao, I. Huvent, G. Lippens, D. Eliezer, A. Zhang, Q.H. Li, P. Tessier, R.J. Linhardt, F.M. Zhang, C.Y. Wang, Glycan determinants of heparin-tau interaction, Biophys. 112 (5) (2017) 921-932. [39] Y. Tu, S. Ma, F. Liu, Y. Sun, X. Dong, Hematoxylin inhibits amyloid β-protein fibrillation and alleviates amyloid-induced cytotoxicity, J. Phys. Chem. B 120 (4) (2016) 11360-11368. [40] K. Bhattacharya, K.B. Rank, D.B. Evens, S.K. Sharma, Role of cysteine-291 and cysteine-322 in the polymerization of human tau into Alzheimer-like filaments, Biochem. Bioph. Res. Co. 285 (1) (2001) 20-26. [41] M.H. Zhang, Q.P. Wu, X.B. Yao, J.Y. Zhao, W.C. Zhong, Q. Liu, S.F. Xiao, Xanthohumol inhibits tau protein aggregation and protects cells against tau aggregates, Food Funct. 10 (12) (2019) 7865-7874 [42] S. Shimonaka, S.E. Matsumoto, M. Elahi, K. Ishiguro, M. Hasegawa, N. Hattori, Y. Motoi, Asparagine residue 368 is involved in Alzheimer’s disease, J. Biol. Chem. 295 (41) (2020) 13996-14014. [43] V.G. KrishnaKumar, A. Paul, E. Gazit, D. Segal, Mechanistic insights into remodeled tau-derived PHF6 peptide fibrils by naphthoquinone-tryptophan hybrids, Sci. Rep. 8 (2018) 71. |