[1] A. Korre, S. Durucan, Z.G. Nie, Life cycle environmental impact assessment of coupled underground coal gasification and CO2 capture and storage: Alternative end uses for the UCG product gases, Int. J. Greenh. Gas Control 91 (2019) 102836. [2] S. Maev, M.S. Blinderman, G.P. Gruber, Underground coal gasification (UCG) to products: Designs, efficiencies, and economics, In: Underground Coal Gasification and Combustion Elsevier, Amsterdam, 2018, pp. 435–468. [3] J.F. Brand, J.C. van Dyk, F.B. Waanders, Conceptual use of vortex technologies for syngas purification and separation in UCG applications, J. S. Afr. Inst. Min. Metall. 118 (10) (2018) 1029–1039 [4] A. de Angelis, Natural gas removal of hydrogen sulphide and mercaptans, Appl. Catal. B Environ. 113-114 (2012) 37–42. [5] M. Seifi, Simulation and modeling of underground coal gasification using porous medium approach, Ph. D. Thesis, University of Calgary, Canada, 2014. [6] B. Olateju, A. Kumar, Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands, Appl. Energy 111 (2013) 428–440. [7] N. Nakaten, T. Kempka, Techno-economic comparison of onshore and offshore underground coal gasification end-product competitiveness, Energies 10 (10) (2017) 1643. [8] C. Otto, T. Kempka, Synthesis gas composition prediction for underground coal gasification using a thermochemical equilibrium modeling approach, Energies 13 (5) (2020) 1171. [9] L. Li, N. Zhao, W. Wei, Y.H. Sun, A review of research progress on CO2 capture, storage, and utilization in Chinese Academy of Sciences, Fuel 108 (2013) 112–130. [10] S.Y. Pan, E. Chang, P.C. Chiang, CO2 capture by accelerated carbonation of alkaline wastes: A review on its principles and applications, Aerosol Air Qual. Res. 12 (5) (2012) 770–791. [11] A. Wilk, L. Więcław-Solny, A. Tatarczuk, A. Krótki, T. Spietz, T. Chwoła, Solvent selection for CO2 capture from gases with high carbon dioxide concentration, Korean J. Chem. Eng. 34 (8) (2017) 2275–2283. [12] A.M. Ribeiro, J.C. Santos, A.E. Rodrigues, S. Rifflart, Syngas stoichiometric adjustment for methanol production and co-capture of carbon dioxide by pressure swing adsorption, Sep. Sci. Technol. 47 (6) (2012) 850–866. [13] C.F. Song, Y. Kitamura, S.H. Li, Evaluation of Stirling cooler system for cryogenic CO2 capture, Appl. Energy 98 (2012) 491–501. [14] F. Fazlollahi, S. Saeidi, M.S. Safdari, M. Sarkari, J.J. Klemeš, L.L. Baxter, Effect of operating conditions on cryogenic carbon dioxide removal, Energy Technol. 5 (9) (2017) 1588–1598. [15] G. Xu, F.F. Liang, Y.P. Yang, Y. Hu, K. Zhang, W.Y. Liu, An improved CO2 separation and purification system based on cryogenic separation and distillation theory, Energies 7 (5) (2014) 3484–3502. [16] J.K. Adewole, A.L. Ahmad, S. Ismail, C.P. Leo, Current challenges in membrane separation of CO2 from natural gas: A review, Int. J. Greenh. Gas Control 17 (2013) 46–65. [17] S.I. Nakao, K. Yogo, K. Goto, T. Kai, H. Yamada, Advanced CO2 Capture Technologies: Absorption, Adsorption, and Membrane Separation Methods, Springer, Cham, 2019. [18] G. Wiciak, J. Kotowicz, Experimental stand for CO2 membrane separation, J. Power Technol. 91 (4) (2011) 171. [19] A.M. Ribeiro, J.C. Santos, A.E. Rodrigues, S. Rifflart, Pressure swing adsorption process in coal to Fischer–Tropsch fuels with CO2 capture, Energy Fuels 26 (2) (2012) 1246–1253. [20] S. Rifflart, A.M.A.P. Ribeiro, J.C.G.D.F. Dos, A.E. Rodrigues, Low energy cyclic psa process, in, Google Patents, 2014. [21] C.A. Grande, R. Blom, A. Möller, J. Möllmer, High-pressure separation of CH4/CO2 using activated carbon, Chem. Eng. Sci. 89 (2013) 10–20. [22] L.F. Tao, P. Xiao, A. Qader, P.A. Webley, CO2 capture from high concentration CO2 natural gas by pressure swing adsorption at the CO2CRC Otway site, Australia, Int. J. Greenh. Gas Control 83 (2019) 1–10. [23] J. Shang, A. Hanif, G. Li, G.K. Xiao, J.Z. Liu, P. Xiao, P.A. Webley, Separation of CO2 and CH4 by pressure swing adsorption using a molecular trapdoor chabazite adsorbent for natural gas purification, Ind. Eng. Chem. Res. 59 (16) (2020) 7857–7865. [24] Y.H. Shen, Y. Zhou, D.D. Li, Q. Fu, D.H. Zhang, P. Na, Dual-reflux pressure swing adsorption process for carbon dioxide capture from dry flue gas, Int. J. Greenh. Gas Control 65 (2017) 55–64. [25] J.P. Tian, Y.H. Shen, D.H. Zhang, Z.L. Tang, CO2 capture by vacuum pressure swing adsorption from dry flue gas with a structured composite adsorption medium, J. Environ. Chem. Eng. 9 (5) (2021) 106037. [26] H.Y. Yan, Q. Fu, Y. Zhou, D.D. Li, D.H. Zhang, CO2 capture from dry flue gas by pressure vacuum swing adsorption: A systematic simulation and optimization, Int. J. Greenh. Gas Control 51 (2016) 1–10. [27] S. Krishnamurthy, V.R. Rao, S. Guntuka, P. Sharratt, R. Haghpanah, A. Rajendran, M. Amanullah, I.A. Karimi, S. Farooq, CO2 capture from dry flue gas by vacuum swing adsorption: A pilot plant study, AIChE J. 60 (5) (2014) 1830–1842. [28] X.X. Yu, B. Liu, Y.H. Shen, D.H. Zhang, Design and experiment of high-productivity two-stage vacuum pressure swing adsorption process for carbon capturing from dry flue gas, Chin. J. Chem. Eng. 43 (2022) 378–391. [29] N. Jiang, Y.H. Shen, B. Liu, D.H. Zhang, Z.L. Tang, G.B. Li, B. Fu, CO2 capture from dry flue gas by means of VPSA, TSA and TVSA, J. CO2 Util. 35 (2020) 153–168. [30] D.D. Li, Y. Zhou, Y.H. Shen, W.N. Sun, Q. Fu, H.Y. Yan, D.H. Zhang, Experiment and simulation for separating CO2/N2 by dual-reflux pressure swing adsorption process, Chem. Eng. J. 297 (2016) 315–324. [31] Z.B. Guan, Y.Y. Wang, X.X. Yu, Y.H. Shen, D.R. He, Z.L. Tang, W.B. Li, D.H. Zhang, Simulation and analysis of dual-reflux pressure swing adsorption using silica gel for blue coal gas initial separation, Int. J. Hydrog. Energy 46 (1) (2021) 683–696. [32] L.A.M. Rocha, K.A. Andreassen, C.A. Grande, Separation of CO2/CH4 using carbon molecular sieve (CMS) at low and high pressure, Chem. Eng. Sci. 164 (2017) 148–157. [33] A. Ntiamoah, J.H. Ling, P. Xiao, P.A. Webley, Y.C. Zhai, CO2 capture by vacuum swing adsorption: Role of multiple pressure equalization steps, Adsorption 21 (6–7) (2015) 509–522. [34] A. Jayaraman, A.S. Chiao, J. Padin, R.T. Yang, C.L. Munson, Kinetic separation of methane/carbon dioxide by molecular sieve carbons, Sep. Sci. Technol. 37 (11) (2002) 2505–2528. [35] G.K. Xiao, P. Xiao, A. Hoadley, P. Webley, Integrated adsorption and absorption process for post-combustion CO2 capture, Front. Chem. Sci. Eng. 15 (3) (2021) 483–492. [36] M. Gatti, E. Martelli, F. Marechal, S. Consonni, Review, modeling, Heat Integration, and improved schemes of Rectisol®-based processes for CO2 capture, Appl. Therm. Eng. 70 (2) (2014) 1123–1140. [37] L. Sun, R. Smith, Rectisol wash process simulation and analysis, J. Clean. Prod. 39 (2013) 321–328. [38] G. Hochgesand, Rectisol and purisol, Ind. Eng. Chem. 62 (7) (1970) 37–43. [39] S.H. Park, S.J. Lee, J.W. Lee, S.N. Chun, J.B. Lee, The quantitative evaluation of two-stage pre-combustion CO2 capture processes using the physical solvents with various design parameters, Energy 81 (2015) 47–55. [40] J.J. Zheng, Y.P. Zhou, Y.T. Zhi, W. Su, Y. Sun, Sorption equilibria of CO2 on silica-gels in the presence of water, Adsorption 18 (2) (2012) 121–126. [41] P. Goyal, M.J. Purdue, S. Farooq, Adsorption and diffusion of N2 and CO2 and their mixture on silica gel, Ind. Eng. Chem. Res. 58 (42) (2019) 19611–19622. [42] J.T. Anyanwu, Y.R. Wang, R.T. Yang, Amine-grafted silica gels for CO2 capture including direct air capture, Ind. Eng. Chem. Res. 59 (15) (2020) 7072–7079. [43] J.P. Zhang, Z.W. Li, Z.H. Zhang, R. Liu, B.Z. Chu, B.H. Yan, Techno-economic analysis of integrating a CO2 hydrogenation-to-methanol unit with a coal-to-methanol process for CO2 reduction, ACS Sustain. Chem. Eng. 8 (49) (2020) 18062–18070. [44] C.H. Yu, Y.J. Lin, D.S.H. Wong, J.C. Bruno, C.C. Chen, Modeling fluid phase equilibria of carbon dioxide-methanol binary system, Fluid Phase Equilibria 529 (2021) 112866. [45] D.Y. Peng, D.B. Robinson, A new two-constant equation of state, Ind. Eng. Chem. Fund. 15 (1) (1976) 59–64. [46] A.Z. Panagiotopoulos, R.C. Reid, New mixing rule for cubic equations of state for highly polar, asymmetric systems, In: Equations of State, American Chemical Society, . Washington, DC, 1986, pp. 571–582. [47] A.Z. Panagiotopoulos, R.C. Reid, High-pressure phase equilibria in ternary fluid mixtures with a supercritical component, In: ACS Symposium Series, American Chemical Society, Washington, DC, 1987, pp. 115–129. [48] H.X. Gao, L.P. Zhou, X. Luo, Z.W. Liang, Optimized process configuration for CO2 recovery from crude synthesis gas via a rectisol wash process, Int. J. Greenh. Gas Control 79 (2018) 83–90. [49] X. Liu, S.Y. Yang, Z.G. Hu, Y. Qian, Simulation and assessment of an integrated acid gas removal process with higher CO2 capture rate, Comput. Chem. Eng. 83 (2015) 48–57. [50] S. Yang, L. Zhang, N. Xie, Z.H. Gu, Z.Q. Liu, Thermodynamic analysis of a semi-lean solution process for energy saving via rectisol wash technology, Energy 226 (2021) 120402. [51] S. Yang, Y. Qian, S.Y. Yang, Development of a full CO2 capture process based on the rectisol wash technology, Ind. Eng. Chem. Res. 55 (21) (2016) 6186–6193. |