[1] C.H. Walker, The hydrophobic effect: formation of micelles and biological membranes, FEBS Lett. 124 (1) (1981) 127. [2] M. Lashkarbolooki, R. Parvizi, S. Ayatollahi, E. Ghaseminejad Raeeni, Effect of salts and their interaction with ingenious surfactants on the interfacial tension of crude oil/ionic solution, Chin. J. Chem. Eng. 28 (1) (2020) 224–235. [3] G. Baskar, L.J.M. Gaspar, A.B. Mandal, Surface characteristics of comblike copolymers from hexadecylacrylamide and acrylic acid at the air/water interface, Langmuir 19 (21) (2003) 9051–9057. [4] X.F. Zhao, Y.Z. Shang, H.L. Liu, Y. Hu, J.W. Jiang, Interaction of DNA with cationic gemini surfactant trimethylene-1, 3-bis (dodecyldimethyl-ammonium bromide) and anionic surfactant SDS mixed system, Chin. J. Chem. Eng. 16 (6) (2008) 923–928. [5] D. Kumar, M.A. Rub, Studies of interaction between ninhydrin and Gly-Leu dipeptide: influence of cationic surfactants (m-s-m type Gemini), J. Mol. Liq. 269 (2018) 1–7. [6] H. Siddiqui, M. Kamil, M. Panda, Kabir-ud-Din, Solubilization of phenanthrene and fluorene in equimolar binary mixtures of gemini/conventional surfactants, Chin. J. Chem. Eng. 22 (9) (2014) 1009–1015. [7] B. Naskar, A. Dan, S. Ghosh, V.K. Aswal, S.P. Moulik, Revisiting the self-aggregation behavior of cetyltrimethylammonium bromide in aqueous sodium salt solution with varied anions, J. Mol. Liq. 170 (2012) 1–10. [8] S.M. Alawi, M.S. Akhter, Effect of N, N-dimethyl acetamide on the critical micelle concentration of aqueous solutions of sodium surfactants, J. Mol. Liq. 160 (2) (2011) 63–66. [9] S. Schreier, S.V. Malheiros, E. de Paula, Surface active drugs: self-association and interaction with membranes and surfactants. Physicochemical and biological aspects, Biochim. Biophys. Acta 1508 (1–2) (2000) 210–234. [10] L.K. Tiwary, A. Mandal, M.S. Alam, S. Thennarasu, A.B. Mandal, Thermodynamics studies on tyrosine-hydantoin drug-cetyltrimethylammonium bromide mixed micellar system, Colloids Surf. B Biointerfaces 82 (1) (2011) 126–133. [11] M.S. Alam, G. Ghosh, A.B. Mandal, Kabir-ud-Din, Aggregation behavior and interaction of an amphiphilic drug imipramine hydrochloride with cationic surfactant cetyltrimethylammonium bromide: light scattering studies, Colloids Surf. B Biointerfaces 88 (2) (2011) 779–784. [12] N. Azum, A. Ahmed, M.A. Rub, A.M. Asiri, S.F. Alamery, Investigation of aggregation behavior of ibuprofen sodium drug under the influence of gelatin protein and salt, J. Mol. Liq. 290 (2019) 111187. [13] M.A. Rub, N. Azum, D. Kumar, M.M. Alotaibi, A.M. Asiri, Impact of numerous media on association, interfacial, and thermodynamic properties of promethazine hydrochloride (PMT) + benzethonium chloride (BTC) mixture of various composition, J. Mol. Liq. 346 (2022) 118287. [14] M.A. Rub, N. Azum, A.M. Asiri, S.Y.M. Alfaifi, S.S. Alharthi, Interaction between antidepressant drug and anionic surfactant in low concentration range in aqueous/salt/urea solution: a conductometric and fluorometric study, J. Mol. Liq. 227 (2017) 1–14. [15] M. Abdul Rub, M. Shafi Sheikh, F. Khan, N. Azum, Y.G. Alghamdi, A.M. Asiri, Impact on micellization between promethazine hydrochloride and ester bonded gemini surfactant in distinct solvents: a multi-faceted procedure, J. Mol. Liq. 342 (2021) 117477. [16] A. Bagheri, Comparison of the interaction between propranolol hydrochloride (PPL) with anionic surfactant and cationic surface active ionic liquid in micellar phase, Colloids Surf. A Physicochem. Eng. Aspects 615 (2021) 126183. [17] I.A. Khan, K. Anjum, P.A. Koya, Kabir-ud-Din, Tensiometric and conductometric studies of the effect of polymers on the aggregation behavior of cationic amphiphilic drugs IMP and PMT, J. Mol. Liq. 193 (2014) 6–12. [18] Ö. Topel, B.A. Çakır, L. Budama, N. Hoda, Determination of critical micelle concentration of polybutadiene-block-poly(ethyleneoxide) diblock copolymer by fluorescence spectroscopy and dynamic light scattering, J. Mol. Liq. 177 (2013) 40–43. [19] H.P.S. Abdul Khalil, A.H. Bhat, A.F. Ireana Yusra, Green composites from sustainable cellulose nanofibrils: a review, Carbohydr. Polym. 87 (2) (2012) 963–979. [20] W.J. Lin, Y.Q. Yang, R.H. Chen, X.F. Wen, Y. Qian, C.Z. Cai, L.J. Zhang, In-situ IR monitoring the synthesis of amphiphilic copolymery P(HEMA-co-tBMA) via ARGET ATRP, Chin. J. Chem. Eng. 22 (9) (2014) 1046–1054. [21] S. Boughammoura, J. M'halla, Estimation of the “hydrophobic reactivity” of SDS micelles by the use of BPh4- anions, J. Mol. Liq. 175 (2012) 148–161. [22] G.M. Whitesides, B. Grzybowski, Self-assembly at all scales, Science 295 (5564) (2002) 2418–2421. [23] M.J. Rosen, J.T. Kunjappu, Surfactants and Interfacial Phenomena[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. [24] T. Hasan, S. Mahbub, D. Kumar, M.K. Gatasheh, M.T. R Joy, M.A. Goni, S. Rana, M.A. Hoque, Phase separation and thermodynamics of the mixture of metformin hydrochloride + triton X-100 in ammonium salts media: impacts of composition of media, Mol. Phys. (2022) e2121776. [25] T. Prasad Niraula, S. Narayan Sah, A. Bhattarai, H. Dominguez, A. Beatriz Salazar-Arriaga, D. Kumar, The physicochemical properties and contact angle of sodium dodecyl sulfate in water-acetone with and without sodium nitrate (NaNO3), J. Mol. Liq. 367 (2022) 120339. [26] P. Katiyar, J.K. Singh, The effect of ionisation of silica nanoparticles on their binding to nonionic surfactants in oil-water system: an atomistic molecular dynamic study, Mol. Phys. 116 (15–16) (2018) 2022–2031. [27] K.J. Edler, D.T. Bowron, Temperature and concentration effects on decyltrimethylammonium micelles in water, Mol. Phys. 117 (22) (2019) 3389–3397. [28] M. Benrraou, R. Zana, Effect of alcohols on the cmc and micelle ionization degree of alkanediyl-α, ω-bis(dimethyldodecylammonium bromide) surfactants, Tenside Surfactants Deterg. 42 (3) (2005) 175–179. [29] T.F. Wang, J. Hu, C.J. Peng, H.L. Liu, Effects of short-chain alcohol on the micellization of gemini surfactant C16-6-16 · 2Br in aqueous solution, J. Dispers. Sci. Technol. 28 (8) (2007) 1169–1172. [30] T. Sidim, G. Acar, Alcohols effect on critic micelle concentration of polysorbate 20 and cetyl trimethyl ammonium bromine mixed solutions, J. Surfactants Deterg. 16 (4) (2013) 601–607. [31] Z.H. Ren, J. Huang, Y. Luo, Y.C. Zheng, P. Mei, W.C. Yu, L. Lai, Y.L. Chang, F.X. Li, Effect of isopropanol on the micellization of binary mixtures containing amino sulfonate amphoteric surfactant in aqueous solution: mixing with octadecyltrimethyl ammonium bromide, Colloids Surf. A Physicochem. Eng. Aspects 504 (2016) 131–138. [32] Z.H. Ren, J. Huang, Y.C. Zheng, L. Lai, X.R. Yu, Y.L. Chang, J.G. Li, G.H. Zhang, Mixed micellization of binary mixture of amino sulfonate amphoteric surfactant with octadecyltrimethyl ammonium bromide in water/isopropanol solution: comparison with that in aqueous solution, J. Dispers. Sci. Technol. 40 (9) (2019) 1353–1359. [33] R. Sheng, Q.Y. Ding, Z.H. Ren, D.N. Li, S.C. Fan, L.L. Cai, X.F. Quan, Y. Wang, M.T. Yi, Y.X. Zhang, Y.X. Cao, H. Wang, J.R. Wang, Q.H. Zhang, Z.B. Qian, Interfacial and micellization behavior of binary mixture of amino sulfonate amphoteric surfactant and octadecyltrimethyl ammonium bromide: effect of short chain alcohol and its chain length, J. Mol. Liq. 334 (2021) 116064. [34] J. Huang, Z.H. Ren, Mechanism on micellization of amino sulfonate amphoteric surfactant in aqueous solutions containing different alcohols and its interfacial adsorption, J. Mol. Liq. 316 (2020) 113793. [35] A.S. Rafique, S. Khodaparast, A.S. Poulos, W.N. Sharratt, E.S.J. Robles, J.T. Cabral, Micellar structure and transformations in sodium alkylbenzenesulfonate (NaLAS) aqueous solutions: effects of concentration, temperature, and salt, Soft Matter 16 (33) (2020) 7835–7844. [36] N. Akhlaghi, S. Riahi, Salinity effect on the surfactant critical micelle concentration through surface tension measurement, Iranian J. Oil Gas Sci. Technol. 8 (2019) 50-63. [37] K. Kumar, B.S. Patial, S. Chauhan, Conductivity and fluorescence studies on the micellization properties of sodium cholate and sodium deoxycholate in aqueous medium at different temperatures: effect of selected amino acids, J. Chem. Thermodyn. 82 (2015) 25–33. [38] M.A. Hoque, M.A. Khan, M.D. Hossain, Interaction of cefalexin monohydrate with cetyldimethylethylammonium bromide, J. Chem. Thermodyn. 60 (2013) 71–75. [39] Z.I. Chowdhury, J.M. Khan, S. Rana, S. Mahbub, M.F. Hossain, M.M. Rahman, M. Irfan, M.Z. Ahmed, M.A. Hoque, S.J. Anwar, Influences of alcohol/polyols on interaction of moxifloxacin hydrochloride through cetyltrimethylammonium bromide at numerous temperatures and compositions, Mol. Phys. 119 (23) (2021) e1955990. [40] M.M.M. Rashid, M. Rahman, M.M. Rahman, S. Mahbub, D. Kumar, M.R. Khan, Z.A. Alothman, M.A. Hoque, Aggregation, interaction and thermodynamic characteristics of cationic surfactant + moxifloxacin hydrochloride mixture in aquatic solutions of mono-/ di-hydroxy compounds, Mol. Phys. 119 (6) (2021) e1849839. [41] S.M.A. Ahsan, N.H. Al-Shaalan, M.R. Amin, M.R. Molla, S. Aktar, M.M. Alam, M.A. Rub, S.M. Wabaidur, M.A. Hoque, M.A. Khan, Interaction of moxifloxacin hydrochloride with sodium dodecyl sulfate and tween 80: Conductivity & phase separation methods, J. Mol. Liq. 301 (2020) 112467. [42] D. Kumar, M.A. Rub, Effect of anionic surfactant and temperature on micellization behavior of promethazine hydrochloride drug in absence and presence of urea, J. Mol. Liq. 238 (2017) 389–396. [43] M.A. Hoque, F. Ahmed, M.A. Halim, M.R. Molla, S. Rana, M.A. Rahman, M.A. Rub, Influence of salt and temperature on the interaction of bovine serum albumin with cetylpyridinium chloride: insights from experimental and molecular dynamics simulation, J. Mol. Liq. 260 (2018) 121–130. [44] W.A. Parker, Alcohol-containing pharmaceuticals, Sci. Rep. 9 (2) (1982) 195–209. [45] M. Almgren, S. Swarup, J.E. Loefroth, Effect of formamide and other organic polar solvents on the micelle formation of sodium dodecyl sulfate, J. Phys. Chem. 89 (21) (1985) 4621–4626. [46] L. Zhou, H.H. Ma, A molecular dynamics study on interfacial heat transport of alkanethiol surfactant coated nanofluids-effect of chain length and stiffness, Mol. Phys. 118 (16) (2020) e1738580. [47] M.A. Rub, D. Kumar, A.M. Asiri, Y.G. Alghamdi, Study of metal-amino acid[Cr(III)-Trp]2+ complex and ninhydrin reaction: role of gemini micellar solution on rate constant, Mol. Phys. 119 (4) (2021) e1817595. [48] S. Aktar, M. Robel Molla, S. Mahbub, M. Abdul Rub, M.A. Hoque, D.M.S. Islam, Effect of temperature and salt/alcohol on the interaction of tetradecyltrimethylammonium bromide/Triton X-100 with moxifloxacin hydrochloride: a multitechnique approach, J. Dispers. Sci. Technol. 40 (4) (2019) 574–586. [49] Y.B. Song, Q.X. Li, Y.L. Li, Self-aggregation and antimicrobial activity of alkylguanidium salts, Colloids Surf. A Physicochem. Eng. Aspects 393 (2012) 11–16. [50] V. Bhardwaj, T. Bhardwaj, K. Sharma, A. Gupta, S. Chauhan, S.S. Cameotra, S. Sharma, R. Gupta, P. Sharma, Drug–surfactant interaction: thermo-acoustic investigation of sodium dodecyl sulfate and antimicrobial drug (levofloxacin) for potential pharmaceutical application, RSC Adv. 4 (47) (2014) 24935–24943. [51] A.M. Dhabbah, Determination of chiral amphetamine in seized tablets by indirect enantioseparation using GC-MS, J. King Saud Univ. Sci. 32 (5) (2020) 2622–2628. [52] P.A. Bhat, A.A. Dar, G.M. Rather, Solubilization capabilities of some cationic, anionic, and nonionic surfactants toward the poorly water-soluble antibiotic drug erythromycin, J. Chem. Eng. Data 53 (6) (2008) 1271–1277. [53] S.P. Liu, F. Wang, Z.F. Liu, X.L. Hu, A.E. Yi, H. Duan, Resonance Rayleigh scattering spectra for studying the interaction of anthracycline antineoplastic antibiotics with some anionic surfactants and their analytical applications, Anal. Chimica Acta 601 (1) (2007) 101–107. [54] M. Rahman, S.J. Anwar, M.R. Molla, S. Rana, M.A. Hoque, M.A. Rub, M.A. Khan, D. Kumar, Influence of alcohols and varying temperatures on the interaction between drug ceftriaxone sodium trihydrate and surfactant: a multi-techniques study, J. Mol. Liq. 292 (2019) 111322. [55] W. Caetano, M. Tabak, Interaction of chlorpromazine and trifluoperazine with anionic sodium dodecyl sulfate (SDS) micelles: electronic absorption and fluorescence studies, J. Colloid Interface Sci. 225 (1) (2000) 69–81. [56] E. Minatti, D. Zanette, Salt effects on the interaction of poly(ethylene oxide) and sodium dodecyl sulfate measured by conductivity, Colloids Surf. A Physicochem. Eng. Aspects 113 (3) (1996) 237–246. [57] F. Khan, M.A. Rub, N. Azum, A.M. Asiri, Mixtures of antidepressant amphiphilic drug imipramine hydrochloride and anionic surfactant: Micellar and thermodynamic investigation, J. Phys. Org. Chem. 31 (6) (2018) 35–48 [58] S. Mahbub, S. Akter, Luthfunnessa, P. Akter, M.A. Hoque, M.A. Rub, D. Kumar, Y.G. Alghamdi, A.M. Asiri, H. Džudžević-Čančar, Effects of temperature and polyols on the ciprofloxacin hydrochloride-mediated micellization of sodium dodecyl sulfate, RSC Adv. 10 (25) (2020) 14531–14541. [59] J. Abedin, S. Mahbub, M.M. Rahman, A. Hoque, D. Kumar, J.M. Khan, A.M. El-Sherbeeny, Interaction of tetradecyltrimethylammonium bromide with bovine serum albumin in different compositions: effect of temperatures and electrolytes/urea, Chin. J. Chem. Eng. 29 (2021) 279–287. [60] M.Z. Hasan, S. Mahbub, M.A. Hoque, M.A. Rub, D. Kumar, Investigation of mixed micellization study of sodium dodecyl sulfate and tetradecyltrimethylammonium bromide mixtures at different compositions: effect of electrolytes and temperatures, J. Phys. Org. Chem. 33 (5) (2020): e4047. [61] J. Aguiar, P. Carpena, J.A. Molina-Bolıvar, C.C. Ruiz, On the determination of the critical micelle concentration by the pyrene 1: 3 ratio method, J. Colloid Interface Sci. 258 (1) (2003) 116–122. [62] M.S. Alam, A.M. Siddiq, V. Mythili, M. Priyadharshini, N. Kamely, A.B. Mandal, Effect of organic additives and temperature on the micellization of cationic surfactant cetyltrimethylammonium chloride: evaluation of thermodynamics, J. Mol. Liq. 199 (2014) 511–517. [63] D. Kumar, S. Hidayathulla, M.A. Rub, Association behavior of a mixed system of the antidepressant drug imipramine hydrochloride and dioctyl sulfosuccinate sodium salt: effect of temperature and salt, J. Mol. Liq. 271 (2018) 254–264. [64] J. Mata, D. Varade, P. Bahadur, Aggregation behavior of quaternary salt based cationic surfactants, Thermochimica Acta 428 (1–2) (2005) 147–155. [65] S. Sultana, M.M. Rahman, M.R. Amin, S. Rana, M.A. Hoque, D. Kumar, M. Alfakeer, Effect of temperature and solvent compositions on the aggregation and thermodynamic properties of the polyvinyl alcohol + tetradecyltrimethylammonium bromide mixture in aqua-organic mixed media, Mol. Phys. 119 (9) (2021) e1892848. [66] Ž. Medoš, M. Bešter-Rogač, Thermodynamics of the micellization process of carboxylates: a conductivity study, J. Chem. Thermodyn. 83 (2015) 117–122. [67] N. Azum, M.A. Rub, A.M. Asiri, Micellization and interfacial behavior of the sodium salt of ibuprofen–BRIJ-58 in aqueous/brine solutions, J. Solut. Chem. 45 (5) (2016) 791–803. [68] M. Anamul Hoque, M. Abdul Rub, M. Majibur Rahman, M. Abdullah Khan, D. Kumar, A.M. Asiri, Micellization, interaction and thermodynamics behavior of BSA + SDS mixture in aqua-organic mixed solvent: influences of temperature and solvent composition, J. Mol. Liq. 344 (2021) 117770. [69] M.K. Al-Muhanna, M.A. Rub, N. Azum, S.B. Khan, A.M. Asiri, Effect of gelatin on micellization and microstructural behavior of amphiphilic amitriptyline hydrochloride drug solution: a detailed study, J. Chem. Thermodyn. 89 (2015) 112–122. [70] S. Das, B. Naskar, S. Ghosh, Influence of temperature and organic solvents (isopropanol and 1, 4-dioxane) on the micellization of cationic gemini surfactant (14-4-14), Soft Matter 10 (16) (2014) 2863–2875. [71] M. Rahman, M.A. Hoque, M.A. Rub, M.A. Khan, Interaction of cetyltrimethylammonium bromide with cefixime trihydrate drug at different temperatures and compositions: effect of different electrolytes, Chin. J. Chem. Eng. 27 (8) (2019) 1895–1903. [72] H.M. Li, Y.H. Xie, C.Q. Liu, S.Q. Liu, Physicochemical bases for protein folding, dynamics, and protein-ligand binding, Sci. China Life Sci. 57 (3) (2014) 287–302. [73] N. Patra, A. Mal, A. Dey, S. Ghosh, Influence of solvent, electrolytes, β-CD, OTAB on the krafft temperature and aggregation of sodium tetradecyl sulfate, J. Mol. Liq. 280 (2019) 307–313. [74] S. Aktar, M. Saha, S. Mahbub, M.A. Halim, M.A. Rub, M.A. Hoque, D.M.S. Islam, D. Kumar, Y.G. Alghamdi, A.M. Asiri, Influence of polyethylene glycol on the aggregation/clouding phenomena of cationic and non-ionic surfactants in attendance of electrolytes (NaCl & Na2SO4): an experimental and theoretical analysis, J. Mol. Liq. 306 (2020) 112880. [75] A.K. Sood, S. Sharma, Influence of organic solvents and temperature on the micellization of conventional and gemini surfactants: a conductometric study, Phys. Chem. Liq. 54 (5) (2016) 574–588. [76] M.A. Hoque, S. Mahbub, J.M. Khan, M.T. R Joy, M.A. Khan, D. Kumar, A. Ahmad, M.Z. Ahmed, Assembly behaviour and thermodynamics of the mixture of cetyltrimethylammonium bromide and bovine serum albumin in aqueous and aqua-ethylene glycol mixed solvents media at several temperatures, Mol. Phys. 120 (6) (2022) e2011455. [77] A.D. Fenta, Surface and thermodynamic studies of micellization of surfactants in binary mixtures of 1,2-ethanediol and 1,2,3-propanetriol with water, Int. J. Phys. Sci., 10 (2015) 276-288. [78] R. Nagarajan, C.C. Wang, Theory of surfactant aggregation in water/ethylene glycol mixed solvents, Langmuir 16 (12) (2000) 5242–5251. [79] S. Chauhan, V. Sharma, K. Singh, M.S. Chauhan, Effect of maltodextrin and temperature on micellar behavior of bile salts in aqueous medium: conductometric and spectrofluorimetric studies, Zeitschrift Für Physikalische Chemie 233 (8) (2019) 1091–1108. [80] R. Lumry, S. Rajender, Enthalpy-entropy compensation phenomena in water solutions of proteins and small molecules: a ubiquitous property of water, Biopolymers 9 (10) (1970) 1125–1227. [81] M. Amin Hossain, M.N. Sultana, J.M. Khan, M.T.R. Joy, S.C. Mohanta, M.R. Amin, M.F. Hossain, M. Irfan, M.Z. Ahmed, D. Kumar, M.A. Hoque, S.E. Kabir, Investigation of the effect of temperature and electrolytes on the physicochemical parameters for the self-assembly of dodecyltrimethylammonium bromide, Chem. Pap. 76 (3) (2022) 1501–1511. [82] R. Jha, J.C. Ahluwalia, Thermodynamics of micellization of some decyl poly(oxyethylene glycol) ethers in aqueous urea solutions, Faraday Trans. 89 (18) (1993) 3465. [83] G. Sugihara, M. Hisatomi, Enthalpy-entropy compensation phenomenon observed for different surfactants in aqueous solution, J Colloid Interface Sci 219 (1) (1999) 31–36. [84] M.R. Amin, S. Mahbub, S. Hidayathulla, M.M. Alam, M.A. Hoque, M.A. Rub, An estimation of the effect of mono/poly-hydroxy organic compounds on the interaction of tetradecyltrimethylammonium bromide with levofloxacin hemihydrate antibiotic drug, J. Mol. Liq. 269 (2018) 417–425. [85] C. Jolicoeur, P.R. Philip, Enthalpy–entropy compensation for micellization and other hydrophobic interactions in aqueous solutions, Can. J. Chem. 52 (10) (1974) 1834–1839. |