[1] M. Abdulkadir, V. Hernandez-Perez, I.S. Lowndes, B.J. Azzopardi, S. Dzomeku, Experimental study of the hydrodynamic behaviour of slug flow in a vertical riser, Chem. Eng. Sci. 106 (2014) 60-75. [2] W.R. Ahmad, J.M. DeJesus, M. Kawaji, Falling film hydrodynamics in slug flow, Chem. Eng. Sci. 53 (1) (1998) 123-130. [3] K. Yan, D.F. Che, Hydrodynamic and mass transfer characteristics of slug flow in a vertical pipe with and without dispersed small bubbles, Int. J. Multiph. Flow 37 (4) (2011) 299-325. [4] D.T. Dumitrescu, Strömung an einer luftblase im senkrechten rohr, Z. Angew. Math. Mech. 23 (3) (1943) 139-149. [5] R.M. Davies, G. Taylor, The mechanics of large bubbles rising through extended liquids and through liquids in tubes, Proc. Roy. Soc. Lond. A 200 (1062) (1950) 375-390. [6] P. Griffith, G.B. Wallis, Two-phase slug flow, J. Heat Transf. 83 (3) (1961) 307-318. [7] H.L. Goldsmith, S.G. Mason, The movement of single large bubbles in closed vertical tubes, J. Fluid Mech. 14 (1) (1962) 42-58. [8] E.T. White, R.H. Beardmore, The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes, Chem. Eng. Sci. 17 (5) (1962) 351-361. [9] R. Brown, The mechanics of large gas bubbles in tubes: II. The prediction of voidage in vertical gas-liquid flow, Can. J. Chem. Eng. 43 (5) (1965) 224-230. [10] G.K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, 2000. [11] R.C. Fernandes, R. Semiat, A.E. Dukler, Hydrodynamic model for gas-liquid slug flow in vertical tubes, AIChE J. 29 (6) (1983) 981-989. [12] K.H. Bendiksen, On the motion of long bubbles in vertical tubes, Int. J. Multiph. Flow 11 (6) (1985) 797-812. [13] R. Collins, A simple model of the plane gas bubble in a finite liquid, J. Fluid Mech. 22 (4) (1965) 763. [14] R. Collins, F.F. De Moraes, J.F. Davidson, D. Harrison, The motion of a large gas bubble rising through liquid flowing in a tube, J. Fluid Mech. 89 (3) (1978) 497-514. [15] R.A. Mazza, E.S. Rosa, C.J. Yoshizawa, Analyses of liquid film models applied to horizontal and near horizontal gas-liquid slug flows, Chem. Eng. Sci. 65 (12) (2010) 3876-3892. [16] G.B. Wallis, One-Dimensional Two-Phase Flow, McGraw-Hill, New York, 1969. [17] W. Nusselt, Die Oberflachenkondensation des Wasserdampfes, Zeitschrift des vereines Deutscher Ingenieure 60 (1916) 569-575. [18] A.E. Dukler, O.P. Bergelin, Characteristics of flow in falling liquid films, Chem. Eng. Process. 48 (11) (1952) 557-563. [19] M.R. Özgu, J.C. Chen, A.H. Stenning, Local liquid film thickness around Taylor bubbles, J. Heat Transf. 95 (3) (1973) 425-427. [20] T.D. Karapantsios, S.V. Paras, A.J. Karabelas, Statistical characteristics of free falling films at high Reynolds numbers, Int. J. Multiph. Flow 15 (1) (1989) 1-21. [21] T.D. Karapantsios, A.J. Karabelas, Longitudinal characteristics of wavy falling films, Int. J. Multiph. Flow 21 (1) (1995) 119-127. [22] V.V. Lel, F. Al-Sibai, A. Leefken, U. Renz, Local thickness and wave velocity measurement of wavy films with a chromatic confocal imaging method and a fluorescence intensity technique, Exp. Fluids 39 (5) (2005) 856-864. [23] J.D.P. Araújo, J.M. Miranda, J.B.L.M. Campos, Flow of two consecutive Taylor bubbles through a vertical column of stagnant liquid—A CFD study about the influence of the leading bubble on the hydrodynamics of the trailing one, Chem. Eng. Sci. 97 (2013) 16-33. [24] C.W. Kang, S.P. Quan, J. Lou, Numerical study of a Taylor bubble rising in stagnant liquids, Phys. Rev. E 81 (6 Pt 2) (2010) 066308. [25] A. Majumdar, P.K. Das, Rise of Taylor bubbles through power law fluids—Analytical modelling and numerical simulation, Chem. Eng. Sci. 205 (2019) 83-93. [26] E.W. Llewellin, E. del Bello, J. Taddeucci, P. Scarlato, S.J. Lane, The thickness of the falling film of liquid around a Taylor bubble, Proc. Roy. Soc. Lond. A 468 (2140) (2012) 1041-1064. [27] M.B. de Azevedo, D.D. Santos, J.L.H. Faccini, J. Su, Experimental study of the falling film of liquid around a Taylor bubble, Int. J. Multiph. Flow 88 (2017) 133-141. [28] Y. Taitel, L. Witte, The role of surface tension in microgravity slug flow, Chem. Eng. Sci. 51 (5) (1996) 695-700. [29] S. Nogueira, M.L. Riethmuler, J.B.L.M. Campos, A.M.F.R. Pinto, Flow in the nose region and annular film around a Taylor bubble rising through vertical columns of stagnant and flowing Newtonian liquids, Chem. Eng. Sci. 61 (2) (2006) 845-857. [30] A.O. Morgado, J.M. Miranda, J.D.P. Araújo, J.B.L.M. Campos, Review on vertical gas-liquid slug flow, Int. J. Multiph. Flow 85 (2016) 348-368. [31] D.J. Nicklin, Two-phase flow in vertical tubes, Trans. Inst. Chem. Eng. 40 (1962) 61-68. [32] A. Orell, R. Rembrand, A model for gas-liquid slug flow in a vertical tube, Ind. Eng. Chem. Fund. 25 (2) (1986) 196-206. [33] Z.S. Mao, A.E. Dukler, An experimental study of gas-liquid slug flow, Exp. Fluids 8 (3-4) (1989) 169-182. [34] L. Shemer, Hydrodynamic and statistical parameters of slug flow, Int. J. Heat Fluid Flow 24 (3) (2003) 334-344. [35] A.M.F.R. Pinto, M.N. Coelho Pinheiro, S. Nogueira, V.D. Ferreira, J.B.L.M. Campos, Experimental study on the transition in the velocity of individual Taylor bubbles in vertical upward co-current liquid flow, Chem. Eng. Res. Des. 83 (9) (2005) 1103-1110. [36] A. Scammell, J. Kim, Heat transfer and flow characteristics of rising Taylor bubbles, Int. J. Heat Mass Transf. 89 (2015) 379-389. [37] E.M.A. Frederix, E.M.J. Komen, I. Tiselj, B. Mikuž, LES of turbulent co-current Taylor bubble flow, Flow Turbul. Combust. 105 (2) (2020) 471-495. [38] J.P. Kockx, F.T.M. Nieuwstadt, R.V.A. Oliemans, R. Delfos, Gas entrainment by a liquid film falling around a stationary Taylor bubble in a vertical tube, Int. J. Multiph. Flow 31 (1) (2005) 1-24. [39] T.S. Mayor, V. Ferreira, A.M.F.R. Pinto, J.B.L.M. Campos, Hydrodynamics of gas-liquid slug flow along vertical pipes in turbulent regime: A simulation study, Int. J. Heat Fluid Flow 29 (4) (2008) 1039-1053. [40] R. Kaji, B.J. Azzopardi, D. Lucas, Investigation of flow development of co-current gas-liquid vertical slug flow, Int. J. Multiph. Flow 35 (4) (2009) 335-348. [41] M.H. Zhang, L.M. Pan, H. He, X.H. Yang, M. Ishii, Experimental study of vertical co-current slug flow in terms of flow regime transition in relatively small diameter tubes, Int. J. Multiph. Flow 108 (2018) 140-155. [42] A.M.F.R. Pinto, M.N. Coelho Pinheiro, J.B.L. Campos, On the interaction of Taylor bubbles rising in two-phase co-current slug flow in vertical columns: turbulent wakes, Exp. Fluids 31 (6) (2001) 643-652. [43] D. Barnea, Effect of bubble shape on pressure drop calculations in vertical slug flow, Int. J. Multiph. Flow 16 (1) (1990) 79-89. [44] A. Bonilla Riaño, I.H. Rodriguez, A.C. Bannwart, O.M.H. Rodriguez, Film thickness measurement in oil-water pipe flow using image processing technique, Exp. Therm. Fluid Sci. 68 (2015) 330-338. [45] D.Y. Wang, N.D. Jin, L.S. Zhai, Y.Y. Ren, Measurement of liquid film thickness using distributed conductance sensor in multiphase slug flow, IEEE Trans. Ind. Electron. 67 (10) (2020) 8841-8850. [46] S. Polonsky, L. Shemer, D. Barnea, The relation between the Taylor bubble motion and the velocity field ahead of it, Int. J. Multiph. Flow 25 (6-7) (1999) 957-975. [47] S. Nogueira, R.G. Sousa, A.M.F.R. Pinto, M.L. Riethmuller, J.B.L.M. Campos, Simultaneous PIV and pulsed shadow technique in slug flow: A solution for optical problems, Exp. Fluids 35 (6) (2003) 598-609. [48] Y.A. Al-Aufi, B.N. Hewakandamby, G. Dimitrakis, M. Holmes, A. Hasan, N.J. Watson, Thin film thickness measurements in two phase annular flows using ultrasonic pulse echo techniques, Flow Meas. Instrum. 66 (2019) 67-78. [49] F.C. Liang, Z.J. Fang, J. Chen, S.T. Sun, Investigating the liquid film characteristics of gas-liquid swirling flow using ultrasound Doppler velocimetry, AIChE J. 63 (6) (2017) 2348-2357. [50] L.C. Yan, Y.F. Wang, Z.W. Wu, Z.H. Dai, G.S. Yu, F.C. Wang, Research of vertical falling film behavior in scrubbing-cooling tube, Chem. Eng. Res. Des. 117 (2017) 627-636. [51] W.K. Ren, N.D. Jin, L.S. Zhai, Y.Y. Ren, Measurement of liquid film thickness in vertical multiphase slug and churn flows using distributed ultrasonic method, IEEE Sens. J. 19 (22) (2019) 10537-10544. [52] D.Y. Wang, N.D. Jin, L.S. Zhai, Y.Y. Ren, Salinity independent flow measurement of vertical upward gas-liquid flows in a small pipe using conductance method, Sensors 20 (18) (2020) 5263. |