[1] L. Hie, E.L. Baker, S.M. Anthony, J.N. Desrosiers, C. Senanayake, N.K. Garg, Nickel-catalyzed esterification of aliphatic amides, Angew. Chem. Int. Edit. 55 (2016) 15129-15132. [2] T. Toyao, M. Nurnobi Rashed, Y. Morita, T. Kamachi, S. Hakim Siddiki, M.A. Ali, A.S. Touchy, K. Kon, Z. Maeno, K.J.C. Yoshizawa, Esterification of tertiary amides by alcohols through C-N bond cleavage over CeO2, ChemCatChem 11 (2019) 449-456. [3] Y. Nishii, T. Hirai, S. Fernandez, P. Knochel, K. Mashima, Zinc-catalyzed esterification of N-β-hydroxyethylamides: Removal of directing groups under mild conditions, Eur. J. Org. Chem. 2017 (2017) 5010-5014. [4] X. Chen, S. Hu, R. Chen, J. Wang, M. Wu, H. Guo, S. Sun, Fe-catalyzed esterification of amides via C-N bond activation, RSC. Adv. 8 (2018) 4571-4576. [5] G. Li, P. Lei, M. Szostak, Transition-metal-free esterification of amides via selective N-C cleavage under mild conditions, Org. Lett. 20 (2018) 5622-5625. [6] L.C. Li, J. Ren, T.G. Liao, J.X. Jiang, H.J. Zhu, A novel direct conversion of primary amides to their corresponding methyl esters, Eur. J. Org. Chem. 2007 (2007) 1026-1030. [7] J.M. Bobbitt, D.A. Scola, Synthesis of isoquinoline alkaloids. II. The synthesis and reactions of 4-methyl-3-pyridinecarboxaldehyde and other 4-methyl-3-substituted pyridines, J. Org. Chem. 25 (1960) 560-564. [8] W.J. Greenlee, E.D. Thorsett, Mild conversion of carboxamides and carboxylic acid hydrazides to acids and esters, J. Org. Chem. 46 (1981) 5351-5353. [9] T. Deguchi, H.L. Xin, H. Morimoto, T. Ohshima, Direct catalytic alcoholysis of unactivated 8-aminoquinoline amides, ACS. Catal. 7 (2017) 3157-3161. [10] T.J. Broxton, L.W. Deady, Mechanism of the basic methanolysis of benzanilides, J. Org. Chem. 39 (1974) 2767-2769. [11] T.J. Broxton, N.W. Duddy, Substituent effects on the basic methanolysis of a series of substituted N-methyl-p-toluanilides, Aust. J. Chem. 33 (1980) 903-906. [12] R.L. Schowen, C.R. Hopper, C.M. Bazikian, Amide hydrolysis. V. Substituent effects and solvent isotope effects in the basic methanolysis of amides, J. Am. Chem. Soc. 94 (1972) 3095-3097. [13] Z. Hou, L. Luo, C. Liu, Y. Wang, L. Dai, Synthesis of ethyl-6-aminohexanoate from caprolactam and ethanol in near-critical water, Chem. Pap. 68 (2014) 164-169. [14] Y. Feng, M. Zhang, H. Zhang, J. Wang, Y. Yang, Continuous synthesis of isobutylaluminoxanes in a compact and integrated approach, Chem. Eng. J. 425 (2021) 131750. [15] Z. Yang, Y. Yang, X. Zhang, W. Du, J. Zhang, G. Qian, X. Duan, X. Zhou, High‐yield production of p-diethynylbenzene through consecutive bromination/dehydrobromination in a microreactor system, AIChE J. 68 (2022) e17498. [16] S. Marre, A. Adamo, S. Basak, C. Aymonier, K.F. Jensen, Design and packaging of microreactors for high pressure and high temperature applications, Ind. Eng. Chem. Res. 49 (2010) 11310-11320. [17] K. Qin, K. Wang, R. Luo, Y. Li, T. Wang, Dispersion of supercritical carbon dioxide to [Emim][BF4] with a T-junction tubing connector, Chem. Eng. Processing. 127 (2018) 58-64. [18] A.K. Goodwin, G.L. Rorrer, Reaction rates for supercritical water gasification of xylose in a micro-tubular reactor, Chem. Eng. J. 163 (2010) 10-21. [19] H. Kawanami, M. Sato, M. Chatterjee, N. Otabe, T. Tuji, Y. Ikushima, T. Ishizaka, T. Yokoyama, T.M. Suzuki, Highly selective non-catalytic claisen rearrangement in a high-pressure and high-temperature water microreaction system, Chem. Eng. J. 167 (2011) 572-577. [20] Y. Li, K. Wang, K. Qin, T. Wang, Beckmann rearrangement reaction of cyclohexanone oxime in sub/supercritical water: Byproduct and selectivity, RSC. Adv. 5 (2015) 25365-25371. [21] K.F. Jensen, Flow chemistry—microreaction technology comes of age, AIChE J. 63 (2017) 858-869. [22] H.P. Gemoets, Y. Su, M. Shang, V. Hessel, R. Luque, T. Noel, Liquid phase oxidation chemistry in continuous-flow microreactors, Chem. Soc. Rev. 45 (2016) 83-117. [23] D. Liu, J.Y. Yan, K. Wang, Y.D. Wang, G.S. Luo, Continuous synthesis of ultrasmall core-shell upconversion nanoparticles via a flow chemistry method, Nano. Res. 15 (2022) 1199-1204. [24] D. Liu, Y. Jing, K. Wang, Y.D. Wang, G.S. Luo, Reaction study of α-phase NaYF4:Yb,Er generation via a tubular microreactor: Discovery of an efficient synthesis strategy, Nanoscale. 11 (2019) 8363-8371. [25] A. Tanimu, S. Jaenicke, K. Alhooshani, Heterogeneous catalysis in continuous flow microreactors: A review of methods and applications, Chem. Eng. J. 327 (2017) 792-821. [26] B. Reichart, G. Tekautz, C.O. Kappe, Continuous flow synthesis of n-alkyl chlorides in a high-temperature microreactor environment, Org. Process Res. Dev. 17 (2013) 152-157. [27] D. Cantillo, C.O. Kappe, Direct preparation of nitriles from carboxylic acids in continuous flow, J. Org. Chem. 78 (2013) 10567-10571. [28] A. Polyzoidis, T. Altenburg, M. Schwarzer, S. Löbbecke, S. Kaskel, Continuous microreactor synthesis of ZIF-8 with high space-time-yield and tunable particle size, Chem. Eng. J. 283 (2016) 971-977. [29] J. Sui, J.Y. Yan, K. Wang, G.S. Luo, Efficient synthesis of lithium rare-earth tetrafluoride nanocrystals via a continuous flow method, Nano. Res. 13 (2020) 2837-2846. [30] M. Shang, T. Noël, Y. Su, V. Hessel, Kinetic study of hydrogen peroxide decomposition at high temperatures and concentrations in two capillary microreactors, AIChE J. 63 (2017) 689-697. [31] S.Y. Lu, K. Wang, Kinetic study of TBD catalyzed δ-valerolactone polymerization using a gas-driven droplet flow reactor, React. Chem. Eng. 4 (2019) 1189-1194. [32] P.C. Zou, K. Wang, G.S. Luo, Continuous deacylation of amides in a high-temperature and high-pressure microreactor, Front. Chem. Sci. Eng., (2022) 1818-1825. [33] M. Mansour, Z. Liu, G. Janiga, K.D. Nigam, K. Sundmacher, D. Thévenin, K. Zähringer, Numerical study of liquid-liquid mixing in helical pipes, Chem. Eng. Sci. 172 (2017) 250-261. [34] K. Wang, H. M. Zhang, Y. Shen, A. Adamo, K. F. Jensen, Thermoformed fluoropolymer tubing for in-line mixing, React. Chem. Eng. 3 (2018) 707-713. [35] M. M.Mandal, C. Serra, Y. Hoarau, K. D. P. Nigam, Numerical modeling of polystyrene synthesis in coiled flow inverter, Microfluid. Nanofluid. 10 (2011) 415-423. [36] K.T. Leffek, A. Suszka, Reaction of 4,4'-bis (dimethylamino) triphenylmethyl tetrafluoroborate with alkoxide ions. I. Determination of ion-pair dissociation constant for sodium alkoxides, Can. J. Chem. 53 (1975) 1537-1541. [37] C.R. Hopper, R.L. Schowen, K. Venkatasubban, H. Jayaraman, Amide hydrolysis. VII. Proton inventories of transition states for solvation catalysis and proton-transfer catalysis. Decomposition of the tetrahedral intermediate in amide methanolysis, J. Am. Chem. Soc. 95 (1973) 3280-3283. [38] K. Sarmini, E. Kenndler, Ionization constants of weak acids and bases in organic solvents, J. Biochem. Bioph. Meth. 38 (1999) 123-137. [39] T. Broxton, L. Deady, P. Williamson, The rates of basic methanolysis of some N-alkyl-p-nitroacetanilides and 4-(N'-alkylacetamido) pyridines, Aust. J. Chem. 27 (1974) 1053-1057. [40] A. Albert, E.P. Serjeant, The determination of ionization constants: A laboratory manual, Chapman and Hall, New York, 1984. |