中国化学工程学报 ›› 2019, Vol. 27 ›› Issue (6): 1403-1415.DOI: 10.1016/j.cjche.2019.02.002
• Special Issue: Separation Process Intensification of Chemical Engineering • 上一篇 下一篇
Yumeng Zhang1, Yudan Zhu1, Anran Wang1, Qingwei Gao1,2, Yao Qin1, Yaojia Chen1, Xiaohua Lu1
收稿日期:
2018-09-29
修回日期:
2019-01-24
出版日期:
2019-06-28
发布日期:
2019-08-19
通讯作者:
Yudan Zhu
基金资助:
Yumeng Zhang1, Yudan Zhu1, Anran Wang1, Qingwei Gao1,2, Yao Qin1, Yaojia Chen1, Xiaohua Lu1
Received:
2018-09-29
Revised:
2019-01-24
Online:
2019-06-28
Published:
2019-08-19
Contact:
Yudan Zhu
Supported by:
摘要: In modern chemical engineering processes, solid interface involvement is the most important component of process intensification techniques, such as nanoporous membrane separation and heterogeneous catalysis. The fundamental mechanism underlying interfacial transport remains incompletely understood given the complexity of heterogeneous interfacial molecular interactions and the high nonideality of the fluid involved. Thus, understanding the effects of interface-induced fluid microstructures on flow resistance is the first step in further understanding interfacial transport. Molecular simulation has become an indispensable method for the investigation of fluid microstructure and flow resistance. Here, we reviewed the recent research progress of our group and the latest relevant works to elucidate the contribution of interface-induced fluid microstructures to flow resistance. We specifically focused on water, ionic aqueous solutions, and alcohol-water mixtures given the ubiquity of these fluid systems in modern chemical engineering processes. We discussed the effects of the interfaceinduced hydrogen bond networks of water molecules, the ionic hydration of ionic aqueous solutions, and the spatial distributions of alcohol and alcohol-water mixtures on flow resistance on the basis of the distinctive characteristics of different fluid systems.
Yumeng Zhang, Yudan Zhu, Anran Wang, Qingwei Gao, Yao Qin, Yaojia Chen, Xiaohua Lu. Progress in molecular-simulation-based research on the effects of interface-induced fluid microstructures on flow resistance[J]. 中国化学工程学报, 2019, 27(6): 1403-1415.
Yumeng Zhang, Yudan Zhu, Anran Wang, Qingwei Gao, Yao Qin, Yaojia Chen, Xiaohua Lu. Progress in molecular-simulation-based research on the effects of interface-induced fluid microstructures on flow resistance[J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1403-1415.
[1] S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature 488(2012) 294-303. [2] L. Hermida, A.Z. Abdullah, A.R. Mohamed, Deoxygenation of fatty acid to produce diesel-like hydrocarbons:A review of process conditions, reaction kinetics and mechanism, Renew. Sust. Energ. Rev. 42(2015) 1223-1233. [3] S. Dixit, A. Yadav, P.D. Dwivedi, M. Das, Toxic hazards of leather industry and technologies to comb at threat:A review, J. Clean. Prod. 87(2015) 39-49. [4] L. Jie, Z. Liang, R. Zou, Y. Zhao, Heterogeneous catalysis in zeolites, mesoporous silica, and metal-organic frameworks, Adv. Mater. 29(2017) 1701139. [5] R.P. Lively, D.S. Sholl, From water to organics in membrane separations, Nat. Mater. 16(2017) 276-279. [6] S. Bano, A. Mahmood, S.J. Kim, K.H. Lee, Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties, J. Mater. Chem. A 3(2015) 2065-2071. [7] J. Wang, P. Zhang, B. Liang, Y. Liu, T. Xu, L. Wang, B. Cao, K. Pan, Graphene oxide as effective barrier on a porous nanofibrous membrane for water treatment, Appl. Mater. Interfaces 8(2016) 6211-6218. [8] H.B. Park, J. Kamcev, L.M. Robeson, M. Elimelech, B.D. Freeman, Maximizing the right stuff:The trade-off between membrane permeability and selectivity, Science 356(2017) 1138-1148. [9] X. Cui, P. Ren, D. Deng, J. Deng, X. Bao, Single layer graphene encapsulating nonprecious metals as high-performance electrocatalysts for water oxidation, Energy Environ. Sci. 9(2016) 123-129. [10] F. Jiao, J. Li, X. Pan, J. Xiao, H. Li, H. Ma, M. Wei, Y. Pan, Z. Zhou, M. Li, Selective conversion of syngas to light olefins, Science 351(2016) 1065-1068. [11] Q. Fu, X. Bao, Surface chemistry and catalysis confined under two-dimensional materials, Chem. Soc. Rev. 46(2017) 1842-1847. [12] X. Chen, L. Yu, S. Wang, D. Deng, X. Bao, Highly active and stable single iron site confined in graphene nanosheets for oxygen reduction reaction, Nano Energy 32(2016) 353-358. [13] Y. Bachmat, J. Bear, Macroscopic modelling of transport phenomena in porous media. 1:The continuum approach, Transp. Porous Media 1(1986) 213-240. [14] F. Bennai, K. Abahri, R. Belarbi, A. Tahakourt, Periodic homogenization for heat, air, and moisture transfer of porous building materials, Numer. Heat Transfer. B Fund. 70(2016) 420-440. [15] X.H. Lu, Y.H. Ji, H.L. Liu, Non-equilibrium thermodynamics analysis and its application in interfacial mass transfer, Sci. China Chem. 54(2011) 1659-1666. [16] C. Liu, X. Feng, X.Y. Ji, D.L. Chen, T. Wei, X.H. Lu, The study of dissolution kinetics of k2SO4 crystal in aqueous ethanol solutions with a statistical rate theory, Chin. J. Chem. Eng. 12(2004) 128-130. [17] X.Y. Ji, D.L. Chen, T. Wei, X.H. Lu, Y.R. Wang, J. Shi, Determination of dissolution kinetics of K2SO4 crystal with ion selective electrode, Chem. Eng. Sci. 56(2001) 7017-7024. [18] Y.H. Ji, X.Y. Ji, C. Liu, X. Feng, X.H. Lu, Modelling of mass transfer coupling with crystallization kinetics in microscale, Chem. Eng. Sci. 65(2015) 2649-2655. [19] N.Z. Bao, L.M. Shen, X. Feng, X.H. Lu, High quality and yield in potassium titanate whiskers synthesized by calcination from hydrous titania, J. Am. Ceram. Soc. 87(2010) 326-330. [20] Y.X. Zhou, C. Liu, M. He, Z.H. Yang, X. Feng, X.H. Lu, Preparation and characterization of alkaline resistant porous ceramics from potassium titanate whiskers, Chin. J. Chem. Eng. 15(2007) 742-747. [21] N.Z. Bao, F. Xin, X.H. Lu, Z.H. Yang, Study on the formation and growth of potassium titanate whiskers, J. Mater. Sci. 37(2002) 3035-3043. [22] W.L. Xie, X.Y. Ji,X. Feng, X.H. Lu, Mass-transfer rate enhancement for CO2 separation by ionic liquids:Theoretical study on the mechanism, AIChE J 61(2016) 4437-4444. [23] W.L. Xie, X.Y. Ji, X. Feng, X.H. Lu, Mass-transfer rate enhancement for CO2 separation by ionic liquids:Effect of film thickness, Ind. Eng. Chem. Res. 55(2016) 366-372. [24] G. Hummer, J.C. Rasaiah, J.P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube, Nature 414(2001) 188-190. [25] J.K. Holt, Methods for probing water at the nanoscale, Microfluid. Nanofluid. 5(2008) 425-442. [26] Y.J. Wang, L.B. Li, Y.Y. Wei, J. Xue, H. Chen, L. Ding, J. Caro, H.H. Wang, Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers, Angew. Chem. Int. Ed. 56(2017) 8974-8980. [27] X. Zhang, W. Zhou, F. Xu, M.J. Wei, Y. Wang, Resistance of water transport in carbon nanotube membranes, Nanoscale 10(2018) 13242-13249. [28] Y.L. Ma, Z.W. Zhang, J.G. Chen, K. Sääskilahti, S. Volz, J. Chen, Ordered water layers by interfacial charge decoration leading to an ultra-low Kapitza resistance between graphene and water, Carbon 135(2018) 263-269. [29] J. Peng, D. Cao, Z. He, J. Guo, P. Hapala, R. Ma, B. Cheng, J. Chen, W.J. Xie, X.Z. Li, The effect of hydration number on the interfacial transport of sodium ions, Nature 557(2018) 701-705. [30] K.E. Gubbins, J.D. Moore, Molecular modeling of matter:Impact and prospects in engineering, Ind. Eng. Chem. Res. 49(2010) 3026-3046. [31] J.C. Palmer, P.G. Debenedetti, Recent advances in molecular simulation:A chemical engineering perspective, AIChE J 61(2015) 370-383. [32] S. Meng, L.F. Greenlee, Y.R. Shen, E. Wang, Basic science of water:challenges and current status towards a molecular picture, Nano Res. 8(2015) 3085-3110. [33] M. Antognozzi, A.D.L. Humphris, M.J. Miles, Observation of molecular layering in a confined water film and study of the layers viscoelastic properties, Appl. Phys. Lett. 78(2001) 300-302. [34] P. Fenter, N.C. Sturchio, Mineral-water interfacial structures revealed by synchrotron X-ray scattering, Prog. Surf. Sci. 77(2004) 171-258. [35] M. Hussain, J. Anwar, The riddle of resorcinol crystal growth revisited:Molecular dynamics simulations of alpha-resorcinol crystal-water interface, J. Am. Chem. Soc. 121(1999) 8583-8591. [36] S.C. Li, L.N. Chu, X.Q. Gong, U. Diebold, Hydrogen bonding controls the dynamics of catechol adsorbed on a TiO2(110) surface, Science 328(2010) 882-884. [37] A. Luzar, D. Chandler, Hydrogen-bond kinetics in liquid water, Nature 379(1996) 55-57. [38] M. Mezei, D.L. Beveridge, Theoretical studies of hydrogen bonding in liquid water and dilute aqueous solutions, J. Chem. Phys. 74(1981) 622-632. [39] A. Geiger, F.H. Stillinger, A. Rahman, Aspects of the percolation process for hydrogen-bond networks in water, J. Chem. Phys. 70(1979) 4185-4193. [40] A. Rahman, F.H. Stillinger, Molecular dynamics study of liquid water, J. Chem. Phys. 61(1974) 4973-4980. [41] E. Guardia, I. Skarmoutsos, M. Masia, Hydrogen bonding and related properties in liquid water:A car-parrinello molecular dynamics simulation study, J. Phys. Chem. B 119(2015) 8926-8938. [42] T.D. Kuhne, R.Z. Khaliullin, Electronic signature of the instantaneous asymmetry in the first coordination shell of liquid water, Nat. Commun. 4(2013) 1450. [43] R. Kumar, J.R. Schmidt, J.L. Skinner, Hydrogen bonding definitions and dynamics in liquid water, J. Chem. Phys. 126(2007) 204107. [44] J.F. Liu, X. He, J.Z.H. Zhang, Structure of liquid water-a dynamical mixture of tetrahedral and ‘ring-and-chain’ like structures, Phys. Chem. Chem. Phys. 19(2017) 11931-11936. [45] W. Zhu, W.H. Zhao, L. Wang, D. Yin, M. Jia, J. Yang, X.C. Zeng, L.F. Yuan, Twodimensional interlocked pentagonal bilayer ice:How do water molecules form a hydrogen bonding network? Phys. Chem. Chem. Phys. 18(2016) 14216-14221. [46] R. Valiullin, J. Kärger, Comment on "Single-file diffusion of confined water inside SWNTs:An NMR study", ACS Nano 4(2010) 1687-1695. [47] W. Cao, L.H. Lu, L.L. Huang, Y.H. Dong, X.H. Lu, Molecular behavior of water on titanium dioxide nanotubes:A molecular dynamics simulation study, J. Chem. Eng. Data 61(2016) 4131-4138. [48] W.P. Qi, H.W. Zhao, Hydrogen bond network in the hydration layer of the water confined in nanotubes increasing the dielectric constant parallel along the nanotube axis, J. Chem. Phys. 143(2015) 114708. [49] G.B. Zhou, C. Liu, L.L. Huang, Molecular dynamics simulation of first-adsorbed water layer at titanium dioxide surfaces, J. Chem. Eng. Data 63(2018) 2420-2429. [50] J. Wang, Y. Zhu, J. Zhou, X.H. Lu, Diameter and helicity effects on static properties of water molecules confined in carbon nanotubes, Phys. Chem. Chem. Phys. 6(2004) 829-835. [51] L.L. Huang, Q. Shao, L.H. Lu, X.H. Lu, L.Z. Zhang, J. Wang, S.Y. Jiang, Helicity and temperature effects on static properties of water molecules confined in modified carbon nanotubes, Phys. Chem. Chem. Phys. 8(2006) 3836-3844. [52] Y.D. Zhu, M.J. Wei, Q. Shao, L.H. Lu, X.H. Lu, W. Shen, Molecular dynamics study of pore inner wall modification effect in structure of water molecules confined in single-walled carbon nanotubes, J. Phys. Chem. C 113(2009) 363-374. [53] L.L. Huang, L.Z. Zhang, Q. Shao, J. Wang, L.H. Lu, X.H. Lu, S.Y. Jiang, W.F. Shen, Molecular dynamics simulation study of the structural characteristics of water molecules confined in functionalized carbon nanotubes, J. Phys. Chem. B 110(2006) 25761-25768. [54] X.M. Wu, L.H. Lu, Y.D. Zhu, M.J. Wei, X.J. Guo, X.H. Lu, Changes in CNT-confined water structural properties induced by the variation in water molecule orientation, Mol. Simul. 38(2012) 1094-1102. [55] Y.D. Zhu, J. Zhou, X.H. Lu, X.J. Guo, L.H. Lu, Molecular simulations on nanoconfined water molecule behaviors for nanoporous material applications, Microfluid. Nanofluid. 15(2013) 191-205. [56] S. Cambré, B. Schoeters, S. Luyckx, E. Goovaerts, W. Wenseleers, Experimental observation of single-file water filling of thin single-wall carbon nanotubes down to chiral index (5,3), Phys. Rev. Lett. 104(2010) 207401. [57] R. Krishna, Diffusion in porous crystalline materials, Chem. Soc. Rev. 21(2012) 3099-3118. [58] A. Esfandiar, B. Radha, F.C. Wang, Q. Yang, S. Hu, S. Garaj, R.R. Nair, A.K. Geim, K. Gopinadhan, Size effect in ion transport through angstrom-scale silts, Science 358(2017) 511-513. [59] L. Fumagalli, A. Esfandiar, R. Fabregas, S. Hu, P. Ares, A. Janardanan, Q. Yang, B. Radha, T. Taniguchi, K. Watanabe, G. Gomila, K.S. Novoselov, A.K. Geim, Anomalously low dielectric constant of confined water, Science 360(2018) 1339-1342. [60] A.K. Geim, Graphene:Status and prospects, Science 324(2009) 1530-1534. [61] A. Keerthi, A.K. Geim, A. Janardanan, A.P. Rooney, A. Esfandiar, S. Hu, S.A. Dar, I.V. Grigorieva, S.J. Haigh, F.C. Wang, B. Radha, Ballistic molecular transport through two-dimensional channels, Nature 558(2018) 420-424. [62] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306(2004) 666-669. [63] K.G. Zhou, K.S. Vasu, C.T. Cherian, M. Neek-Amal, J.C. Zhang, H. GhorbanfekrKalashami, K. Huang, O.P. Marshall, V.G. Kravets, J. Abraham, Y. Su, A.N. Grigorenko, A. Pratt, A.K. Geim, F.M. Peeters, K.S. Novoselov, R.R. Nair, Electrically controlled water permeation through graphene oxide membranes, Nature 559(2018) 236-240. [64] J. Gao, Y.P. Feng, W. Guo, L. Jiang, Nanofluidics in two-dimensional layered materials:Inspirations from nature, Chem. Soc. Rev. 46(2017) 5400-5424. [65] R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A.K. Geim, R.R. Nair, Precise and ultrafast molecular sieving through graphene oxide membranes, Science 343(2014) 752-754. [66] T.R. Prisk, C. Hoffmann, A.I. Kolesnikov, E. Mamontov, A.A. Podlesnyak, X. Wang, P.R.C. Kent, L.M. Anovitz, Fast rotational diffusion of water molecules in a 2D hydrogen bond network at cryogenic temperatures, Phys. Rev. Lett. 120(2018) 196001. [67] D. Argyris, N.R. Tummala, A. Striolo, D.R. Cole, Molecular structure and dynamics in thin water films at the silica and graphite surfaces, J. Phys. Chem. C 112(2008) 13587-13599. [68] Y. Shen, X.X. He, F.R. Hung, Structural and dynamical properties of a deep eutectic solvent confined inside a slit pore, J. Phys. Chem. C 119(2015) 24489-24500. [69] M.J. Wei, L.Z. Zhang, L.L. Lu, Y.D. Zhu, K.E. Gubbins, X.H. Lu, Molecular behavior of water in TiO2 nano-slits with varying coverages of carbon:A molecular dynamics simulation study, Phys. Chem. Chem. Phys. 14(2012) 16536-16543. [70] M.J. Wei, J. Zhou, X. Lu, Y. Zhu, W. Liu, L. Lu, L. Zhang, Diffusion of water molecules confined inslits of rutile TiO2 and graphite, Fluid Phase Equilib. 302(2011)316-320. [71] Y.M. Zhang, Y.D. Zhu, Z.R. Li, Y. Ruan, L.C. Li, L.H. Lu, X.H. Lu, Temperaturedependent structural properties of water molecules confined in TiO2 nanoslits:Insights from molecular dynamics simulations, Fluid Phase Equilib. 430(2016) 169-177. [72] A. Bahramian, Molecular interactions insights underlying temperature-dependent structure of water molecules on TiO2 nanostructured film:A computational study using reactive and non-reactive force fields, Fluid Phase Equilib. 438(2017) 53-66. [73] L.C.Li,Y.D.Zhu,X.H.Lu,M.J.Wei,W.Zhuang,Z.H.Yang,X.Feng,Carbonheterogeneous surface modification on a mesoporous TiO2-supported catalyst and its enhanced hydrodesulfurization performance, Chem. Commun. 48(2012) 11525-11527. [74] Y.D. Zhu, L.Z. Zhang, X.H. Lu, L.H. Lu, X.M. Wu, Flow resistance analysis of nanoconfined water in silt pores by molecular simulations:effect of pore wall interfacial properties, Fluid Phase Equilib. 362(2014) 235-241. [75] Y.D. Zhu, Y.M. Zhang, Y.J. Shi, X.H. Lu, J.H. Li, L.H. Lu, Lubrication behavior of water molecules confined in TiO2 nanoslits:A molecular dynamics study, J. Chem. Eng. Data 61(2016) 4023-4030. [76] Q.G.L. Zhu, P. Sun, W. Chen, X. Wang, G. Xue, Characterization of the mobility and reactivity of water molecules on TiO2 nanoparticles by 1H solid-state nuclear magnetic resonance, Appl. Mater. Interfaces 5(2013) 10352-10356. [77] R. An, Q.M. Yu, L.Z. Zhang, Y.D. Zhu, X.J. Guo, S.Q. Fu, L.C. Li, C.S. Wang, X.M. Wu, C. Liu, Simple physical approach to reducing frictional and adhesive forces on a TiO2 surface via creating heterogeneous nanopores, Langmuir 28(2012) 15270-15277. [78] G. Mogami, M. Suzuki, N. Matubayasi, Spatial-decomposition analysis of energetics of ionic hydration, J. Phys. Chem. B 120(2016) 1813-1821. [79] Q.W. Gao, Y.D. Zhu, X.Y. Ji, W. Zhu, L.H. Lu, X.H. Lu, Effect of water concentration on the microstructures of choline chloride/urea (1:2)/water mixture, Fluid Phase Equilib. 470(2018) 134-139. [80] X. Guo, Q. Shao, L. Lu, Y. Zhu, M. Wei, X. Lu, Molecular dynamics simulation study of ionic hydration in negatively charged single-walled carbon nanotubes, J. Nanosci. Nanotechnol. 10(2010) 7620-7624. [81] X.J. Guo, Y.D. Zhu, M.J. Wei, X.M. Wu, L.H. Lu, X.H. Lu, Theoretical study of hydration effects on the selectivity of 18-crown-6 between K+ and Na+, Chin. J. Chem. Eng. 19(2011) 212-216. [82] Y. Ruan, Y.D. Zhu, Y.M. Zhang, Q.W. Gao, X.H. Lu, L.H. Lu, Molecular dynamics study of Mg2+/Li+ separation via biomimetic graphene-based nanopores:The role of dehydration in second shell, Langmuir 32(2016) 13778-13786. [83] Q. Shao, L.L. Huang, J. Zhou, L.H. Lu, L.Z. Zhang, X.H. Lu, S.Y. Jiang, K.E. Gubbins, W.F. Shen, Molecular simulation study of temperature effect on ionic hydration in carbon nanotubes, Phys. Chem. Chem. Phys. 10(2008) 1896-1906. [84] Q. Shao, J. Zhou, L.H. Lu, X.H. Lu, Y.D. Zhu, S.Y. Jiang, Anomalous hydration shell order of Na+ and K+ inside carbon nanotubes, Nano Lett. 9(2009) 989-994. [85] J. Zhou, X.H. Lu, Y.R. Wang, J. Shi, Molecular dynamics study on ionic hydration, Fluid Phase Equilib. 194(2002) 257-270. [86] Y.D. Zhu, Y. Ruan, X.M. Wu, X.H. Lu, Y.M. Zhang, L.H. Lu, Electric field-responsive nanopores with ion selectivity:Controlling based on transport resistance, Chem. Eng. Technol. 39(2016) 993-997. [87] Y.D. Zhu, X.J. Guo, Q. Shao, M.J. Wei, X.M. Wu, L.H. Lu, X.H. Lu, Molecular simulation study of the effect of inner wall modified groups on ionic hydration confined in carbon nanotube, Fluid Phase Equilib. 297(2010) 215-220. [88] Y.D. Zhu, Y. Ruan, Y.M. Zhang, Y.J. Chen, X.H. Lu, L.H. Lu, Mg2+-channel-inspired nanopores for Mg2+/Li+ separation:The effect of coordination on the ionic hydration microstructures, Langmuir 33(2017) 9201-9210. [89] H. Vikström, S. Davidsson, M. Höök, Lithium availability and future production outlooks, Appl. Energy 110(2013) 252-266. [90] R. Chitrakar, Y. Makita, K. Ooi, A. Sonoda, Lithium recovery from salt lake brine by H2TiO3, Dalton Trans. 43(2014) 8933-8939. [91] R. Pfoh, A. Li, N. Chakrabarti, J. Payandeh, R. Pomes, E.F. Pai, Structural asymmetry in the magnesium channel CorA points to sequential allosteric regulation, Proc. Natl. Acad. Sci. U. S. A. 109(2012) 18809-18814. [92] S. Kitjaruwankul, P. Wapeesittipan, P. Boonamnaj, P. Sompompisut, Inner and outer coordination shells of Mg2+ in CorA selectivity filter from molecular dynamics simulations, J. Phys. Chem. B 120(2016) 406-417. [93] J.E. Bara, T.K. Carlisle, C.J. Gabriel, D. Camper, A. Finotello, D.L. Gin, R.D. Noble, Guide to CO2 separations in imidazolium-based room-temperature ionic liquids, Ind. Eng. Chem. Res. 48(2009) 2739-2751. [94] L.J. Lozano, C. Godínez, A.P.D.L. Ríos, F.J. Hernández-Fernández, S. Sánchez-Segado, F.J. Alguacil, Recent advances in supported ionic liquid membrane technology, J. Membr. Sci. 376(2011) 1-14. [95] R.D. Noble, D.L. Gin, Perspective on ionic liquids and ionic liquid membranes, J. Membr. Sci. 369(2011) 1-4. [96] P. Luis, T.V. Gerven, B.V.D. Bruggen, Recent developments in membrane-based technologies for CO2 capture, Prog. Energy Combust. Sci. 38(2012) 419-448. [97] R. Futamura, T. Iiyama, Y. Takasaki, Y. Gogotsi, M.J. Biggs, M. Salanne, J. Ségalini, P. Simon, K. Kaneko, Partial breaking of the coulombic ordering of ionic liquids confined in carbon nanopores, Nat. Mater. 16(2017) 1225-1232. [98] H. Ding, Y. Zhu, J. Wang, X.H. Lu, J. Ma, Quantum chemical calculations on the hydration and association of MgCl2 and CaCl2 solutions at high and super-critical temperatures, Acta Chim. Sin. 62(2004) 1287-1292. [99] W. Shi, D.R. Luebke, Enhanced gas absorption in the ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim] [Tf2N]) confined in silica slit pores:A molecular simulation study, Langmuir 29(2013) 5563. [100] T. Selkala,T. Suopajarvi, J.A. Sirvio, T. Luukkonen,G.S.Lorite,S. Kalliola, M. Sillanpaa, H. Liimatainen, Rapid uptake of pharmaceutical salbutamol from aqueous solutions with anionic cellulose nanofibrils:The importance of pH and colloidal stability in the interaction with ionizable pollutants, Chem. Eng. J. 350(2018) 378-385. [101] O.Y. Fajardo, F. Bresme, A.A. Kornyshev, M. Urbakh, Water in ionic liquid lubricants:Friend and foe, ACS Nano 11(2017) 6825-6831. [102] Y.J. Xie, H.F. Dong, S.J. Zhang, X.H. Lu, X.Y. Ji, Effect of water on the density, viscosity, and CO2 solubility in choline chloride/urea, J. Chem. Eng. Data 59(2014) 3344-3352. [103] J. Zheng, E.M. Lennon, H.K. Tsao, Y.J. Sheng, S.Y. Jiang, Transport of a liquid water and methanol mixture through carbon nanotubes under a chemical potential gradient, J. Chem. Phys. 122(2005) 214702. [104] L.H. Lu, Q. Shao, L.L. Huang, X.H. Lu, Simulation of adsorption and separation of ethanol-water mixture with zeolite and carbon nanotube, Fluid Phase Equilib. 261(2007) 191-198. [105] M.F. Xu, L.J. Chandler, J.J. Woodward, Ethanol inhibition of recombinant NMDA receptors is not altered by coexpression of CaMKⅡ-alpha or CaMKⅡ-beta, Alcohol 42(2008) 425-432. [106] G.P. Liu, W. Wei, W.Q. Jin, Pervaporation membranes for biobutanol production, ACS Sustain. Chem. Eng. 2(2014) 546-560. [107] H.J. Huang, S. Ramaswamy, U.W. Tschirner, B.V. Ramarao, A review of separation technologies in current and future biorefineries, Sep. Purif. Technol. 62(2015) 1-21. [108] J. Zhao, W.Q. Jin, Manipulation of confined structure in alcohol-permselective pervaporation membranes, Chin. J. Chem. Eng. 25(2017) 1616-1626. [109] Q. Shao, L.L. Huang, J. Zhou, L.H. Lu, L.Z. Zhang, X.H. Lu, S.Y. Jiang, K.E. Gubbins, Y.D. Zhu, W.F. Shen, Molecular dynamics study on diameter effect in structure of ethanol molecules confined in single-walled carbon nanotubes, J. Phys. Chem. C 111(2007) 15677-15685. [110] Q.W. Gao, Y.D. Zhu, Y. Ruan, Y.M. Zhang, W. Zhu, X.H. Lu, L.H. Lu, Effect of adsorbed alcohol layers on the behavior of water molecules confined in a graphene nanoslit:A molecular dynamics study, Langmuir 33(2017) 11467-11474. [111] J.H. Li, Y.D. Zhu, Y.M. Zhang, Q.W. Gao, W. Zhu, X.H. Lu, Y.J. Shi, Extra low friction coefficient caused by the formation of a solid-like layer:A new lubrication mechanism found through molecular simulation of the lubrication of MoS2 nanoslits, Chin. J. Chem. Eng. 26(2018) 2412-2419. [112] A. Ghoufi, I. Hureau, D. Morineau, R. Renou, A. Szymczyk, Confinement of tertbutanol nanoclusters in hydrophilic and hydrophobic silica nanopores, J. Phys. Chem. C 117(2013) 15203-15212. [113] K. Falk, F. Sedlmeier, L. Joly, R.R. Netz, L. Bocquet, Ultralow liquid/solid friction in carbon nanotubes:comprehensive theory for alcohols, alkanes, OMCTS, and water, Langmuir 28(2012) 14261-14272. [114] Q. Shao, L.L. Huang, X.H. Lu, L.H. Lü, Y.D. Zhu, W.F. Shen, Molecular simulation study of the structure and diffusion of ethanol molecules confined in carbon nanotubes, Acta Chim. Sin. 65(2007) 2217-2223. [115] G. Garberoglio, Single-particle and collective dynamics of methanol confined in carbon nanotubes:A computer simulation study, J. Phys. Condens. Matter 22(2010) 415104. [116] J. Terrones, P.J. Kiley, J.A. Elliott, Enhanced ordering reduces electric susceptibility of liquids confined to graphene slit pores, Sci. Rep. UK 6(2016) 27406. [117] S. Furukawa, Molecular simulation study on adsorption and diffusion behavior of ethanolwater molecules in NaA zeolite crystal, J. Chem. Eng. Jpn 31(2004) 67-74. [118] H.L. Wang, S. Jin, G.K. Liu, Y.Q. Zhang, J.J. Zhang, S.M. Li, Investigation of transport properties of water-methanol solution through CNT with oscillating electric field, J. Phys. Chem. B 121(2017) 1041-1053. [119] M.Y. Zhao, X.N. Yang, Segregation structures and miscellaneous diffusions for ethanol/water mixtures in graphene-based nanoscale pores, J. Phys. Chem. C 119(2015) 21664-21673. [120] H.W. Dai, S.Y. Liu, M.Y. Zhao, Z.J. Xu, X.N. Yang, Interfacial friction of ethanol-water mixtures in graphene pores, Microfluid. Nanofluid. 20(2016) 141-150. [121] D.D. Borges, C.F. Woellner, P.A.S. Autreto, D.S. Galvao, Insights on the mechanism of water-alcohol separation in multilayer graphene oxide membranes:Entropic versus enthalpic factors, Carbon 127(2018) 280-286. [122] A. Phan, D.R. Cole, A. Striolo, Preferential adsorption from liquid water-ethanol mixtures in alumina pores, Langmuir 30(2014) 8066-8077. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||