[1] F.J. Barnés, C.J. King, Synthesis of cascade refrigeration and liquefaction systems, Ind. Eng. Chem. Proc. Des. Dev. 13 (4) (1974) 421-433 [2] W.B. Cheng, R.S.H. Mah, Interactive synthesis of cascade refrigeration systems, Ind. Eng. Chem. Proc. Des. Dev. 19 (3) (1980) 410-420 [3] T.R. Colmenares, W.D. Seider, Synthesis of cascade refrigeration systems integrated with chemical processes, Comput. Chem. Eng. 13 (3) (1989) 247-258 [4] M. Montanez-Morantes, M. Jobson, N. Zhang, Operational optimisation of centrifugal compressors in multilevel refrigeration cycles, Comput. Chem. Eng. 85 (2016) 188-201 [5] J.S. Oh, M. Binns, S. Park, J.K. Kim, Improving the energy efficiency of industrial refrigeration systems, Energy 112 (2016) 826-835 [6] K.J. Chua, S.K. Chou, W.M. Yang, Advances in heat pump systems: a review, Appl. Energy 87 (12) (2010) 3611-3624 [7] M.Z. Pan, H. Zhao, D.W. Liang, Y. Zhu, Y.C. Liang, G.R. Bao, A review of the cascade refrigeration system, Energies 13 (9) (2020) 2254 [8] X.J. Sun, L.L. Liu, Y.C. Dong, Y. Zhuang, L. Zhang, J. Du, Superstructure-based simultaneous optimization of a heat exchanger network and a compression-absorption cascade refrigeration system for heat recovery, Ind. Eng. Chem. Res. 59 (36) (2020) 16017-16028 [9] L.M. Chávez-Islas, C.L. Heard, I.E. Grossmann, Synthesis and optimization of an ammonia-water absorption refrigeration cycle considering different types of heat exchangers by application of mixed-integer nonlinear programming, Ind. Eng. Chem. Res. 48 (6) (2009) 2972-2990 [10] M.R. Shelton, I.E. Grossmann, Optimal synthesis of integrated refrigeration systems—I, Comput. Chem. Eng. 10 (5) (1986) 445-459 [11] S. Nakariyakul, A comparative study of suboptimal branch and bound algorithms, Inf. Sci. 278 (2014) 545-554 [12] G. Wu, X.X. Zhu, Design of integrated refrigeration systems, Ind. Eng. Chem. Res. 41 (3) (2002) 553-571 [13] H. Dinh, J. Zhang, Q. Xu, Process synthesis for cascade refrigeration system based on exergy analysis, Aiche J. 61 (8) (2015) 2471-2488 [14] J.F. Liu, N. Ploskas, N.V. Sahinidis, Tuning BARON using derivative-free optimization algorithms, J. Glob. Optim. 74 (4) (2019) 611-637 [15] T. Yang, Y.Q. Luo, Y.J. Ma, X.G. Yuan, Optimal synthesis of compression refrigeration system using a novel MINLP approach, Chin. J. Chem. Eng. 26 (8) (2018) 1662-1669 [16] D.L. Chen, X. Ma, Y.Q. Luo, Y.J. Ma, X.G. Yuan, Synthesis of refrigeration system based on generalized disjunctive programming model, Chin. J. Chem. Eng. 26 (8) (2018) 1613-1620 [17] E. Balas, Disjunctive programming, Annals Discrete Math, 5(1979)3-51 [18] I.E. Grossmann, F. Trespalacios, Systematic modeling of discrete-continuous optimization models through generalized disjunctive programming, AIChE J. 59 (9) (2013) 3276-3295 [19] D.L. Chen, Y.Q. Luo, X.G. Yuan, Refrigeration system synthesis by continuous temperature level optimization considering the sub-cooler configuration, Comput. Chem. Eng. 141 (2020) 107031 [20] D.L. Chen, Y.Q. Luo, X.G. Yuan, Refrigeration system synthesis based on de-redundant model by particle swarm optimization algorithm, Chin. J. Chem. Eng. (2022) [21] S. Vaidyaraman, C.D. Maranas, Optimal synthesis of refrigeration cycles and selection of refrigerants, Aiche J. 45 (5) (1999) 997-1017 [22] M. Baz, B. Hunsaker, O. Prokopyev, How much do we “pay” for using default parameters? Comput. Optim. Appl. 48 (1) (2011) 91-108 [23] J. Zhang, Q. Xu, Cascade refrigeration system synthesis based on exergy analysis, Comput. Chem. Eng. 35 (9) (2011) 1901-1914 [24] A.S. Wallerand, M. Kermani, I. Kantor, F. Maréchal, Optimal heat pump integration in industrial processes, Appl. Energy 219 (2018) 68-92 [25] M. Martinelli, C. Elsido, I.E. Grossmann, E. Martelli, Simultaneous synthesis and optimization of refrigeration cycles and heat exchangers networks, Appl. Therm. Eng. 206 (2022) 118052 [26] M.F. Cardoso, R.L. Salcedo, S.F. de Azevedo, D. Barbosa, A simulated annealing approach to the solution of minlp problems, Comput. Chem. Eng. 21 (12) (1997) 1349-1364 [27] S. Kirkpatrick, C.D. Gelatt Jr, M.P. Vecchi, Optimization by simulated annealing, Science 220 (4598) (1983) 671-680 [28] X.L. Yang, J.D. Ward, Extractive distillation optimization using simulated annealing and a process simulation automation server, Ind. Eng. Chem. Res. 57 (32) (2018) 11050-11060 [29] S. Zhang, Y.Q. Luo, X.G. Yuan, A novel stochastic optimization method to efficiently synthesize large-scale nonsharp distillation systems, Aiche J. 67 (9) (2021) e17328 [30] Y. Shi, R.C. Eberhart, Parameter selection in particle swarm optimization, in: Evolutionary programming VII: Proceedings of the EP98, in: Springer-Verlag, New York, 1998: pp. 591-600 [31] Y. Shi, R.C. Eberhart, Parameter selection in particle swarm optimization, in: Evolutionary programming VII: Proceedings of the EP98, in: Springer-Verlag, New York, 1998: pp. 591-600 [32] B. Linnhoff, S. Ahmad, Cost optimum heat exchanger networks—1. Minimum energy and capital using simple models for capital cost, Comput. Chem. Eng. 14 (7) (1990) 729-750 [33] B. Linnhoff, D.R. Mason, I. Wardle, Understanding heat exchanger networks, Comput. Chem. Eng. 3 (1-4) (1979) 295-302 [34] S.A. Papoulias, I.E. Grossmann, A structural optimization approach in process synthesis—II: heat recovery networks, Comput. Chem. Eng. 7 (6) (1983) 707-721 [35] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys. 21 (6) (1953) 1087-1092 |