[1] H.J. Huang, B. Wang, Y. Wang, Y.J. Zhao, S.P. Wang, X.B. Ma, Partial hydrogenation of dimethyl oxalate on Cu/SiO2 catalyst modified by sodium silicate, Catal. Today 358 (2020) 68-73. [2] M.L. Wang, D.W. Yao, A.T. Li, Y.W. Yang, J. Lv, S.Y. Huang, Y.E. Wang, X.B. Ma, Enhanced selectivity and stability of Cu/SiO2 catalysts for dimethyl oxalate hydrogenation to ethylene glycol by using silane coupling agents for surface modification, Ind. Eng. Chem. Res. 59 (20) (2020) 9414-9422. [3] Z. He, H.Q. Lin, P. He, Y.Z. Yuan, Effect of boric oxide doping on the stability and activity of a Cu-SiO2 catalyst for vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol, J. Catal. 277 (1) (2011) 54-63. [4] X.P. Wang, M. Chen, X.K. Chen, R.H. Lin, H.J. Zhu, C.Q. Huang, W.S. Yang, Y.A. Tan, S.S. Wang, Z.N. Du, Y.J. Ding, Constructing copper-zinc interface for selective hydrogenation of dimethyl oxalate, J. Catal. 383 (2020) 254-263. [5] X.B. Yu, T.A. Vest, N. Gleason-Boure, S.G. Karakalos, G.L. Tate, M. Burkholder, J.R. Monnier, C.T. Williams, Enhanced hydrogenation of dimethyl oxalate to ethylene glycol over indium promoted Cu/SiO2, J. Catal. 380 (2019) 289-296. [6] L. Zhang, P.P. Ai, Z.H. Gao, W. Huang, Enhanced catalytic stability of Cu-based catalyst for dimethyl oxalate hydrogenation, Fuel 324 (2022) 124536. [7] X.B. Yu, M. Burkholder, S.G. Karakalos, G.L. Tate, J.R. Monnier, B.F. Gupton, C.T. Williams, Hydrogenation of dimethyl oxalate to ethylene glycol over Cu/KIT-6 catalysts, Catal. Sci. Technol. 11 (7) (2021) 2403-2413. [8] Y.X. Xu, L.X. Kong, H.J. Huang, H. Wang, X.F. Wang, S.P. Wang, Y.J. Zhao, X.B. Ma, Promotional effect of indium on Cu/SiO2 catalysts for the hydrogenation of dimethyl oxalate to ethylene glycol, Catal. Sci. Technol. 11 (20) (2021) 6854-6865. [9] Y.Y. Zhu, S.R. Wang, L.J. Zhu, X.L. Ge, X.B. Li, Z.Y. Luo, The influence of copper particle dispersion in Cu/SiO2 catalysts on the hydrogenation synthesis of ethylene glycol, Catal. Lett. 135 (3) (2010) 275-281. [10] Y.B. Song, J.A. Zhang, J. Lv, Y.J. Zhao, X.B. Ma, Hydrogenation of dimethyl oxalate over copper-based catalysts: Acid-base properties and reaction paths, Ind. Eng. Chem. Res. 54 (40) (2015) 9699-9707. [11] Y.J. Zhao, S. Zhao, Y.C. Geng, Y.L. Shen, H.R. Yue, J. Lv, S.P. Wang, X.B. Ma, Ni-containing Cu/SiO2 catalyst for the chemoselective synthesis of ethanol via hydrogenation of dimethyl oxalate, Catal. Today 276 (2016) 28-35. [12] Y.J. Zhao, H.H. Zhang, Y.X. Xu, S.N. Wang, Y. Xu, S.P. Wang, X.B. Ma, Interface tuning of Cu+/Cu0 by zirconia for dimethyl oxalate hydrogenation to ethylene glycol over Cu/SiO2 catalyst, J. Energy Chem. 49 (2020) 248-256. [13] C.C. Chen, L. Lin, R.P. Ye, M.L. Sun, J.X. Yang, F. Li, Y.G. Yao, Mannitol as a novel dopant for Cu/SiO2: A low-cost, environmental and highly stable catalyst for dimethyl oxalate hydrogenation without hydrogen prereduction, J. Catal. 389 (2020) 421-431. [14] Q. Wang, L. Qiu, D. Ding, Y.Z. Chen, C.W. Shi, P. Cui, Y. Wang, Q.H. Zhang, R. Liu, H. Shen, Performance enhancement of Cu/SiO2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol through zinc incorporation, Catal. Commun. 108 (2018) 68-72. [15] Y.E. Wang, Y.J. Zhao, J. Lv, X.B. Ma, Facile synthesis of Cu@CeO2 and its catalytic behavior for the hydrogenation of methyl acetate to ethanol, ChemCatChem 9 (12) (2017) 2085-2090. [16] P.P. Ai, M.H. Tan, Y. Ishikuro, Y. Hosoi, G.H. Yang, Y. Yoneyama, N. Tsubaki, Design of an autoreduced copper in carbon nanotube catalyst to realize the precisely selective hydrogenation of dimethyl oxalate, ChemCatChem 9 (6) (2017) 1067-1075. [17] X.B. Ma, H.W. Chi, H.R. Yue, Y.J. Zhao, Y. Xu, J. Lv, S.P. Wang, J.L. Gong, Hydrogenation of dimethyl oxalate to ethylene glycol over mesoporous Cu-MCM-41 catalysts, AIChE J. 59 (7) (2013) 2530-2539. [18] J.Z. Shi, Y. He, K. Ma, S.Y. Tang, C.J. Liu, H.R. Yue, B. Liang, Cu active sites confined in MgAl layered double hydroxide for hydrogenation of dimethyl oxalate to ethanol, Catal. Today 365 (2021) 318-326. [19] H.B. Sheng, H.T. Zhang, H.F. Ma, W.X. Qian, W.Y. Ying, An effective Cu-Ag/HMS bimetallic catalyst for hydrogenation of methyl acetate to ethanol, Catal. Today 358 (2020) 122-128. [20] Y.J. Zhao, Y.Q. Zhang, Y. Wang, J. Zhang, Y. Xu, S.P. Wang, X.B. Ma, Structure evolution of mesoporous silica supported copper catalyst for dimethyl oxalate hydrogenation, Appl. Catal. A 539 (2017) 59-69. [21] A. Abdul Jalil, A.S. Zolkifli, S. Triwahyono, A.F. Abdul Rahman, N.N. Mohd Ghani, M.Y. Shahul Hamid, F.H. Mustapha, S.M. Izan, B. Nabgan, A. Ripin, Altering dendrimer structure of fibrous-silica-HZSM5 for enhanced product selectivity of benzene methylation, Ind. Eng. Chem. Res. 58 (2) (2019) 553-562. [22] M.Y. Ouyang, Y. Wang, J. Zhang, Y.J. Zhao, S.P. Wang, X.B. Ma, Three dimensional Ag/KCC-1 catalyst with a hierarchical fibrous framework for the hydrogenation of dimethyl oxalate, RSC Adv. 6 (16) (2016) 12788-12791. [23] N. Bayal, B. Singh, R. Singh, V. Polshettiwar, Size and fiber density controlled synthesis of fibrous nanosilica spheres (KCC-1), Sci. Rep. 6 (2016) 24888. [24] I. Munaweera, J. Hong, A. D’Souza, K.J. Balkus Jr, Novel wrinkled periodic mesoporous organosilica nanoparticles for hydrophobic anticancer drug delivery, J. Porous Mater. 22 (1) (2015) 1-10. [25] Z.S. Qureshi, P.B. Sarawade, M. Albert, V. D'Elia, M.N. Hedhili, K. Köhler, J.M. Basset, Palladium nanoparticles supported on fibrous-structured silica nanospheres (KCC-1): An efficient and selective catalyst for the transfer hydrogenation of alkenes, ChemCatChem 7 (4) (2015) 635-642. [26] T.J. Siang, A.A. Jalil, M.Y.S. Hamid, Bifunctional metal-free KAUST Catalysis Center 1 (KCC-1) as highly active catalyst for syngas production via methane partial oxidation, Mater. Today Chem. 23 (2022) 100684. [27] V. Polshettiwar, D. Cha, X. Zhang, J.M. Basset, High-surface-area silica nanospheres (KCC-1) with a fibrous morphology, Angew. Chem. Int. Ed Engl. 49 (50) (2010) 9652-9656. [28] M.Z. Sun, A. Hanif, T.Q. Wang, C. Yang, D.C.W. Tsang, J. Shang, Chrysanthemum flower like silica with highly dispersed Cu nanoparticles as a high-performance NO2 adsorbent, J. Hazard. Mater. 418 (2021) 126400. [29] P.P. Ai, H.Q. Jin, J.C. Niu, W. Huang, M.H. Tan, Synergistic effect of urchin-like spherical Cu-based catalyst for enhanced dimethyl oxalate hydrogenation capacity, Fuel 333 (2023) 126330. [30] R. Soltani, A. Marjani, M.R.S. Moguei, B. Rostami, S. Shirazian, Novel diamino-functionalized fibrous silica submicro-spheres with a bimodal-micro-mesoporous network: Ultrasonic-assisted fabrication, characterization, and their application for superior uptake of Congo red, J. Mol. Liq. 294 (2019) 111617. [31] J.W. Zheng, L.L. Huang, C.H. Cui, Z.C. Chen, X.F. Liu, X.P. Duan, X.Y. Cao, T.Z. Yang, H.P. Zhu, K. Shi, P. Du, S.W. Ying, C.F. Zhu, Y.G. Yao, G.C. Guo, Y.Z. Yuan, S.Y. Xie, L.S. Zheng, Ambient-pressure synthesis of ethylene glycol catalyzed by C60-buffered Cu/SiO2, Science 376 (6590) (2022) 288-292. [32] R.P. Ye, L. Lin, L.C. Wang, D. Ding, Z.F. Zhou, P.B. Pan, Z.H. Xu, J.A. Liu, H. Adidharma, M. Radosz, M.H. Fan, Y.G. Yao, Perspectives on the active sites and catalyst design for the hydrogenation of dimethyl oxalate, ACS Catal. 10 (8) (2020) 4465-4490. |