[1] N. Gascoin, P. Gillard, S. Bernard, E. Daniau, M. Bouchez, SFGP 2007-Pyrolysis of supercritical endothermic fuel: Evaluation for active cooling instrumentation, Int. J. Chem. React. Eng. 6 (1) (2008) A7. [2] T. Edwards, Liquid fuels and propellants for aerospace propulsion: 1903-2003, J. Propuls. Power 19 (6) (2003) 1089-1107. [3] H. Lander, A. Nixon, Endothermic fuels for high Mach vehicles, Prepr. Am. Chem. Soc. Div. Petroleum Chem. 32 (1987) 504-511. [4] K. Jackson, E. Corporan, P. Buckley, J. Leingang, M. Karpuk, J. Dippo, B. Hitch, D. Wickham, T. Yee, Test results of an endothermic fuel reactor, In: Proceedings of AIAA Sixth International Aerospace Planes and Hypersonics Technologies Conference, Chattanooga, TN, USA, 1995. [5] G.L. Chen, N. Chukwunenye, G.F. Jones, C.H. Li, Biomimetic structures by leaf vein growth mechanism for pool boiling heat transfer enhancements, Int. J. Heat Mass Transf. 155 (2020) 119699. [6] Z.L. Lei, Z.W. Bao, Experimental investigation on laminar heat transfer performances of RP-3 at supercritical pressure in the helical coiled tube, Int. J. Heat Mass Transf. 185 (2022) 122326. [7] A. Benabderrahmane, A. Benazza, A.K. Hussein, Heat transfer enhancement analysis of tube receiver for parabolic trough solar collector with central corrugated insert, J. Heat Transf. 142 (6) (2020) 062001. [8] C.R. Zhao, Z. Zhang, P.X. Jiang, R.N. Xu, H.L. Bo, Influence of channel scale on the convective heat transfer of CO2 at supercritical pressure in vertical tubes, Int. J. Heat Mass Transf. 126 (2018) 201-210. [9] X.F. Li, X.L. Huai, J. Cai, F.Q. Zhong, X.J. Fan, Z.X. Guo, Convective heat transfer characteristics of China RP-3 aviation kerosene at supercritical pressure, Appl. Therm. Eng. 31 (14-15) (2011) 2360-2366. [10] K.K. Xu, X. Sun, H. Meng, Conjugate heat transfer, endothermic fuel pyrolysis and surface coking of aviation kerosene in ribbed tube at supercritical pressure, Int. J. Therm. Sci. 132 (2018) 209-218. [11] S. Feng, X. Cheng, Q.C. Bi, H. Pan, Z.H. Liu, Experimental investigation on convective heat transfer of hydrocarbon fuel in circular tubes with twisted-tape inserts, Int. J. Heat Mass Transf. 146 (2020) 118817. [12] J.J. Yan, Y.H. Zhu, R. Zhao, S. Yan, P.X. Jiang, Experimental investigation of the flow and heat transfer instabilities in n-decane at supercritical pressures in a vertical tube, Int. J. Heat Mass Transf. 120 (2018) 987-996. [13] P.X. Jiang, J.J. Yan, S. Yan, Z.L. Lu, Y.H. Zhu, Thermal cracking and heat transfer of hydrocarbon fuels at supercritical pressures in vertical tubes, Heat Transf. Eng. 40 (5-6) (2019) 437-449. [14] J. Wen, H.R. Huang, Y.C. Fu, G.Q. Xu, K. Zhu, Heat transfer performance of aviation kerosene RP-3 flowing in a vertical helical tube at supercritical pressure, Appl. Therm. Eng. 121 (2017) 853-862. [15] H. Abdi, S. Asaadi, H. Kivi, S. Pesteei, A comprehensive numerical study on nanofluid flow and heat transfer of helical, spiral and straight tubes with different cross sections, Int. J. Heat Technol. 37 (4) (2019) 1031-1042. [16] L. Santini, A. Cioncolini, M.T. Butel, M.E. Ricotti, Flow boiling heat transfer in a helically coiled steam generator for nuclear power applications, Int. J. Heat Mass Transf. 92 (2016) 91-99. [17] W.R. Dean, Note on the motion of fluid in a curved pipe, Lond. Edinb. Dublin Philos. Mag. J. Sci. 4 (20) (1927) 208-223. [18] W.R. Dean, The stream-line motion of fluid in a curved pipe (Second paper), Lond. Edinb. Dublin Philos. Mag. J. Sci. 5 (30) (1928) 673-695. [19] M.R.H. Nobari, E.Amani, A numerical investigation of developing flow and heat transfer in a curved pipe, Int. J. Numer. Methods Heat Fluid Flow 19 (7) (2009) 847-873. [20] M. Ciofalo, A. Arini, M. Di Liberto, On the influence of gravitational and centrifugal buoyancy on laminar flow and heat transfer in curved pipes and coils, Int. J. Heat Mass Transf. 82 (2015) 123-134. [21] D.G. Prabhanjan, G.S.V. Raghavan, T.J. Rennie, Comparison of heat transfer rates between a straight tube heat exchanger and a helically coiled heat exchanger, Int. Commun. Heat Mass Transf. 29 (2) (2002) 185-191. [22] P. Naphon, J. Suwagrai, Effect of curvature ratios on the heat transfer and flow developments in the horizontal spirally coiled tubes, Int. J. Heat Mass Transf. 50 (3-4) (2007) 444-451. [23] K. Yan, P.Q. Ge, Y.C. Su, H.T. Meng, Numerical simulation on heat transfer characteristic of conical spiral tube bundle, Appl. Therm. Eng. 31 (2-3) (2011) 284-292. [24] A.P. Sasmito, J.C. Kurnia, W.J. Wang, S.V. Jangam, A.S. Mujumdar, Numerical analysis of laminar heat transfer performance of in-plane spiral ducts with various cross-sections at fixed cross-section area, Int. J. Heat Mass Transf. 55 (21-22) (2012) 5882-5890. [25] J.C. Kurnia, A.P. Sasmito, Heat transfer performance and entropy generation of helical square tubes with various curvature radiuses, Energy Procedia 142 (2017) 4064-4069. [26] X.F. Zhai, C. Qi, Y.H. Pan, T. Luo, L. Liang, Effects of screw pitches and rotation angles on flow and heat transfer characteristics of nanofluids in spiral tubes, Int. J. Heat Mass Transf. 130 (2019) 989-1003. [27] H.D. Li, Y.Q. Wang, C. He, X.Y. Chen, Q.Y. Zhang, L. Zheng, F.S. Yang, Z.X. Zhang, Design and performance simulation of the spiral mini-channel reactor during H2 absorption, Int. J. Hydrog. Energy 40 (39) (2015) 13490-13505. [28] H. Hajji, L. Kolsi, K. Ghachem, C. Maatki, A.K. Hussein, M.N. Borjini, Numerical study of heat transfer and flow structure over a microscale backstep, Alex. Eng. J. 60 (3) (2021) 2759-2768. [29] H.A. Mohammed, P. Gunnasegaran, N.H. Shuaib, Numerical simulation of heat transfer enhancement in wavy microchannel heat sink, Int. Commun. Heat Mass Transf. 38 (1) (2011) 63-68. [30] V.S. Duryodhan, A. Singh, S.G. Singh, A. Agrawal, Convective heat transfer in diverging and converging microchannels, Int. J. Heat Mass Transf. 80 (2015) 424-438. [31] L. Ben Said, L. Kolsi, N. Ben Khedher, F. Alshammari, E.H. Malekshah, A.K. Hussein, Numerical study of the fluid-structure interaction during CNT-water nanofluid mixed convection in a micro-channel equipped with elastic fins under periodic inlet velocity conditions, Exp. Tech. (2021) 1-9. [32] J. Wen, H.R. Huang, Z.X. Jia, Y.C. Fu, G.Q. Xu, Buoyancy effects on heat transfer to supercritical pressure hydrocarbon fuel in a horizontal miniature tube, Int. J. Heat Mass Transf. 115 (2017) 1173-1181. [33] W.X. Zhou, B. Yu, J. Qin, D.R. Yu, Mechanism and influencing factors analysis of flowing instability of supercritical endothermic hydrocarbon fuel within a small-scale channel, Appl. Therm. Eng. 71 (1) (2014) 34-42. [34] Y.C. Fu, H.R. Huang, J. Wen, G.Q. Xu, W. Zhao, Experimental investigation on convective heat transfer of supercritical RP-3 in vertical miniature tubes with various diameters, Int. J. Heat Mass Transf. 112 (2017) 814-824. [35] H. Pu, S.F. Li, M. Dong, S. Jiao, Y.N. Wang, Y. Shang, Convective heat transfer and flow resistance characteristics of supercritical pressure hydrocarbon fuel in a horizontal rectangular mini-channel, Exp. Therm. Fluid Sci. 108 (2019) 39-53. [36] Y.X. Hua, Y.Z. Wang, H. Meng, A numerical study of supercritical forced convective heat transfer of n-heptane inside a horizontal miniature tube, J. Supercrit. Fluids 52 (1) (2010) 36-46. [37] Y.C. Lei, Z.Q. Chen, Numerical study on cooling heat transfer and pressure drop of supercritical CO2 in wavy microchannels, Int. J. Refrig. 90 (2018) 46-57. [38] C.Y. Yang, K.C. Liao, Effect of experimental method on the heat transfer performance of supercritical carbon dioxide in microchannel, J. Heat Transf. 139 (11) (2017) 112404. [39] J. Khalesi, N. Sarunac, Numerical analysis of flow and conjugate heat transfer for supercritical CO2 and liquid sodium in square microchannels, Int. J. Heat Mass Transf. 132 (2019) 1187-1199. [40] S.A. Jajja, K.R. Zada, B.M. Fronk, Experimental investigation of supercritical carbon dioxide in horizontal microchannels with non-uniform heat flux boundary conditions, Int. J. Heat Mass Transf. 130 (2019) 304-319. [41] J.Y. Moon, J.H. Heo, B.J. Chung, Natural convection experiments on the outer surface of an inclined helical coil, Heat Mass Transfer 51 (9) (2015) 1229-1236. |