[1] U. Ali, K.j.b. Abd Karim, N.a. Buang, A review of the properties and applications of poly (methyl methacrylate) (PMMA), Polym. Rev. 55 (2015) (4)678–705. [2] D. Achilias, Chemical recycling of poly(methyl methacrylate) by pyrolysis. Potential use of the liquid fraction as a raw material for the reproduction of the polymer, Eur. Polym. J. 43 (6) (2007) 2564–2575. [3] D.H.A. Sudarni, J.Juwari, Process safety index in chemical process, IPTEK J. Proc. Ser. (2) (2017) 10. [4] Fei, Zhao, Process design and multi-objective optimization for separation of ternary mixtures with double azeotropes via integrated quasi-continuous pressure-swing batch distillation, Sep. Purif. Technol. 276 (2021) 119288. [5] X. Li, Y.T. Zhao, B. Qin, X. Zhang, Y.L. Wang, Z.Y.Zhu, Optimization of pressure-swing batch distillation with and without heat integration for separating dichloromethane/methanol azeotrope based on minimum total annual cost, Ind. Eng. Chem. Res. 56 (14) (2017) 4104–4112. [6] S.S. Liang, Y.J. Cao, X.Z. Liu, X. Li, Y.T. Zhao, Y.K. Wang, Y.L.Wang, Insight into pressure-swing distillation from azeotropic phenomenon to dynamic control, Chem. Eng. Res. Des. 117 (2017) 318–335. [7] Y. Dai, F.B. Zheng, B.K. Xia, P.Z. Cui, Y.L. Wang, J.Gao, Application of mixed solvent to achieve an energy-saving hybrid process including liquid-liquid extraction and heterogeneous azeotropic distillation, Ind. Eng. Chem. Res. 58 (6) (2019) 2379–2388. [8] W.L. Luyben, Control of a multiunit heterogeneous azeotropic distillation process, Aiche J. 52 (2) (2006) 623–637. [9] Y.X. Ma, P.Z. Cui, Y.K. Wang, Z.Y. Zhu, Y.L. Wang, J.Gao, A review of extractive distillation from an azeotropic phenomenon for dynamic control, Chin. J. Chem. Eng. 27 (7) (2019) 1510–1522. [10] Hong, Li, Molecular interaction mechanism in the separation of a binary azeotropic system by extractive distillation with ionic liquid, Green Energy Environ. 6 (3) (2021) 329–338. [11] Liping, Lü, Comparison of continuous homogenous azeotropic and pressure-swing distillation for a minimum azeotropic system ethyl acetate/n-hexane separation, Chin. J. Chem. Eng. 26 (10) (2018) 2023–2033. [12] Y. Zhang, T. Wu, I. L. Chien, Energy-efficient heterogeneous azeotropic distillation coupling with pressure swing distillation for the separation of IPA/DIPE/Water mixture, J Taiwan Inst. Chem. E. 130 (2022) 103843. [13] O.M. Wahnschafft, J.W. Koehler, E. Blass, A.W.Westerberg, The product composition regions of single-feed azeotropic distillation columns, Ind. Eng. Chem. Res. 31 (10) (1992) 2345–2362. [14] G.J A.F. Fien, Y.A.Liu, Heuristic synthesis and shortcut design of separation processes using residue curve maps: A review, Ind. Eng. Chem. Res. 33 (11) (1994) 2505–2522. [15] L. Krolikowski, Distillation limit dependence on feed quality and column equipment, Chem. Eng. Res. Des. 99 (2015) 149–157. [16] D.S. Sholl, R.P.Lively, Seven chemical separations to change the world, Nature 532 (7600) (2016) 435–437. [17] Xin, Li, Thermodynamic efficiency enhancement of pressure-swing distillation process via heat integration and heat pump technology, Appl. Therm. Eng. 154 (2019) 519–529. [18] M.F. Cardoso, R.L. Salcedo, S.F. de Azevedo, D.Barbosa, Optimization of reactive distillation processes with simulated annealing, Chem. Eng. Sci. 55 (21) (2000) 5059–5078. [19] Y. Donald, Chaniago, Optimal design of advanced distillation configuration for enhanced energy efficiency of waste solvent recovery process in semiconductor industry, Energy Convers. Manag. 102 (2015) 92–103. [20] X. Gao, X. Geng, Application of the chemical-looping concept for azoetrope separation, Engineering 7 (1) (2021) 84–93. [21] X. Geng, H. Zhou, P. Yan, H. Li, X. Li, X. Gao, Exergy, economic and environmental analysis of an integrated pressure-swing reactive distillation process for the isobutyl acetate production via methyl acetate transesterification, Process. Saf. Environ. Prot. 158 (2022) 525–536. [22] Kai, Zhang, Recent advances in nanofiltration, reverse osmosis membranes and their applications in biomedical separation field, Chin. J. Chem. Eng. 49 (2022) 76–99. [23] S. Shirazian, A. Marjani, F. Fadaei, Supercritical extraction of organic solutes from aqueous solutions by means of membrane contactors: CFD simulation, Desalination 277 (1–3) (2011) 135–140. [24] L. Yang, W. Zhou, H. Li, A. Alsalme, L.T. Jia, J.F. Yang, J.P. Li, L.B. Li, B.L.Chen, Reversed ethane/ethylene adsorption in a metal-organic framework via introduction of oxygen, Chin. J. Chem. Eng. 28 (2) (2020) 593–597. [25] G. Liu, W. Jin, Pervaporation membrane materials: Recent trends and perspectives, J. Membr. Sci. 636 (2021) 119557. [26] T. Eljaddi, D. Mendez, E. Favre, D. Roizard, Development of new pervaporation composite membranes for desalination: Theoretical and experimental investigations, Desalination 507 (2021) 115006. [27] G.Y. Dong, H. Nagasawa, L. Yu, Q. Wang, K. Yamamoto, J. Ohshita, M. Kanezashi, T. Tsuru, Pervaporation removal of methanol from methanol/organic azeotropes using organosilica membranes: Experimental and modeling, J. Membr. Sci. 610 (2020) 118284. [28] C. Ma, H. Liu, J. Qiu, X. Zhang, Bimetallic Zn/Co-ZIF tubular membrane for highly efficient pervaporation separation of Methanol/MTBE mixture, J. Membr. Sci. 638 (2021) 119676. [29] S.P. Bera, M. Godhaniya, C. Kothari, Emerging and advanced membrane technology for wastewater treatment: A review, J. Basic Microbiol. 62 (3–4) (2022) 245–259. [30] H.J. Huang, S. Ramaswamy, U.W. Tschirner, B.V.Ramarao, A review of separation technologies in current and future biorefineries, Sep. Purif. Technol. 62 (1) (2008) 1–21. [31] W. Van Hecke, E. Joossen-Meyvis, H. Beckers, H.De Wever, Prospects & potential of biobutanol production integrated with organophilic pervaporation - A techno-economic assessment, Appl. Energy 228 (2018) 437–449. [32] Qinggang, Xu, Economy, environmental assessment and energy conservation for separation of isopropanol/diisopropyl ether/water multi-azeotropes via extractive distillation coupled pervaporation process, Chin. J. Chem. Eng. 54 (2023) 353–363. [33] G. Rionugroho, Harvianto, A thermally coupled reactive distillation and pervaporation hybrid process for n-butyl acetate production with enhanced energy efficiency, Chem. Eng. Res. Des. 124 (2017) 98–113. [34] W.T. Han, Z.W. Han, X.C. Gao, Z. Hong, X.G. Li, H. Li, X.H. Gu, X. Gao, Inter-integration reactive distillation with vapor permeation for ethyl levulinate production: Equipment development and experimental validating, Aiche J. 68 (2) (2022) e17441. [35] A.V. Orchillés, P.J. Miguel, E. Vercher, A.Martínez-Andreu, Ionic liquids as entrainers in extractive distillation: Isobaric vapor–liquid equilibria for acetone + methanol + 1-ethyl-3-methylimidazolium trifluoromethanesulfonate, J. Chem. Eng. Data 52 (1) (2007) 141–147. [36] W.X. Li, D.Z. Sun, T. Zhang, S.W. Dai, F.J. Pan, Z.G.Zhang, Separation of acetone and methanol azeotropic system using ionic liquid as entrainer, Fluid Phase Equilibria 383 (2014) 182–187. [37] E. Vercher, A.V. Orchillés, P.J. Miguel, V. González-Alfaro, A.Martínez-Andreu, Isobaric vapor-liquid equilibria for acetone + methanol + lithium nitrate at 100 kPa, Fluid Phase Equilibria 250 (1–2) (2006) 131–137. [38] Y. Li, Q. Ye, N. Wang, L. Chen, H. Zhang, Y. Xu, Energy-efficient extractive distillation combined with heat-integrated and intermediate reboilers for separating acetonitrile/isopropanol/water mixture, Sep. Purif. Technol. 262 (2021) 118343. [39] A. Yang, Y. Su, S.R. Sun, W.F. Shen, M.N. Bai, J.Z. Ren, Towards sustainable separation of the ternary azeotropic mixture based on the intensified reactive-extractive distillation configurations and multi-objective particle swarm optimization, J. Clean. Prod. 332 (2022) 130116. [40] J.M. Douglas, The conceptual design of chemical processes, New York: McGraw-Hill, (1988). [41] P. Schiffmann, J.U. Repke, Design of pervaporation modules based on computational process modelling. In: Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2011. [42] H. Chang, S.G. Lyu, C.M. Tsai, Y.H. Chen, T.W. Cheng, Y.H.Chou, Experimental and simulation study of a solar thermal driven membrane distillation desalination process, Desalination 286 (2012) 400–411. [43] Yinglong, Wang, Design optimization and operating pressure effects in the separation of acetonitrile/methanol/water mixture by ternary extractive distillation, J. Clean. Prod. 218 (2019) 212–224. [44] J.D. Seader, E.J. Henley, J. separation process principles, New York: Wiley, (1998). [45] J. Humphrey, G. Keller, Separation process technology, New York: McGraw-Hill, (1997). [46] P. Wankat, Separation process engineering 2nd edition, Pearson Education,, (2021). [47] W. Chen, Z. Gu, G. Ran, Q. Li, Application of membrane separation technology in the treatment of leachate in China: A review, Waste Manag. 121 (2021) 127–140. [48] X.S. Feng, R.Y.M.Huang, Liquid separation by membrane pervaporation: A review, Ind. Eng. Chem. Res. 36 (4) (1997) 1048–1066. [49] Q.Z. Wang, N. Li, B. Bolto, M. Hoang, Z.L.Xie, Desalination by pervaporation: A review, Desalination 387 (2016) 46–60. [50] M. Khayet, T. Matsuura, Pervaporation and vacuum membrane distillation processes: Modeling and experiments, Aiche J. 50 (8) (2004) 1697–1712. [51] T. Jin, Y.L. Ma, W. Matsuda, Y. Masuda, M. Nakajima, K. Ninomiya, T. Hiraoka, J.Y. Fukunaga, Y. Daiko, T.Yazawa, Preparation of surface-modified mesoporous silica membranes and separation mechanism of their pervaporation properties, Desalination 280 (1–3) (2011) 139–145. [52] L.C. Wang, Y. Wang, L.Y. Wu, G.Wei, Fabrication, properties, performances, and separation application of polymeric pervaporation membranes: A review, Polymers 12 (7) (2020) 1466. [53] T.Bowen, Pervaporation of organic/water mixtures through B-ZSM-5 zeolite membranes on monolith supports, J. Membr. Sci. 215 (1–2) (2003) 235–247. [54] Bin, Liang, High performance hydrophilic pervaporation composite membranes for water desalination, Desalination 347 (2014) 199–206. [55] Joanna, Kujawa, Highly hydrophobic ceramic membranes applied to the removal of volatile organic compounds in pervaporation, Chem. Eng. J. 260 (2015) 43–54. [56] Christian, Poma, Design and performance evaluation of a waste-to-energy plant integrated with a combined cycle, Energy 35 (2) (2010) 786–793. [57] Q. Sun, Y. Wang, Z. Cheng, Thermodynamic and economic optimization of a double-pressure organic Rankine cycle driven by low-temperature heat source, Renew. Energy 147 (2020) 2822–2832. |