[1] T. Carreón, M.J. Hein, K.W. Hanley, S.M. Viet, A.M. Ruder, Bladder cancer incidence among workers exposed to o-toluidine, aniline and nitrobenzene at a rubber chemical manufacturing plant, Occup. Environ. Med. 71 (3) (2014) 175–182. [2] A. Thakuri, M. Banerjee, A. Chatterjee, Microwave-assisted rapid and sustainable synthesis of unsymmetrical azo dyes by coupling of nitroarenes with aniline derivatives, iScience 25 (6) (2022) 104497. [3] D.Q. Hu, Y.L. Zhou, X.F. Jiang, From aniline to phenol: Carbon-nitrogen bond activation via uranyl photoredox catalysis, Natl. Sci. Rev. 9 (6) (2021) nwab156. [4] X.H. Li, X.D. Jin, N.N. Zhao, I. Angelidaki, Y.F. Zhang, Efficient treatment of aniline containing wastewater in bipolar membrane microbial electrolysis cell-Fenton system, Water Res. 119 (2017) 67–72. [5] L.F. Ren, K. Chen, X.F. Zhang, Y.B. Xu, L. Chen, J.H. Shao, Y.L. He, Effect of aniline and antimony on anaerobic-anoxic-oxic system with novel amidoxime-modified polyacrylonitrile adsorbent for wastewater treatment, Bioresour. Technol. 351 (2022) 127082. [6] M.Y. Badi, A. Esrafili, H. Pasalari, R.R. Kalantary, E. Ahmadi, M. Gholami, A. Azari, Degradation of dimethyl phthalate using persulfate activated by UV and ferrous ions: Optimizing operational parameters mechanism and pathway, J. Environ. Health Sci. Eng. 17 (2) (2019) 685–700. [7] I. Ali, S. Afshinb, Y. Poureshgh, A. Azari, Y. Rashtbari, A. Feizizadeh, A. Hamzezadeh, M. Fazlzadeh, Green preparation of activated carbon from pomegranate peel coated with zero-valent iron nanoparticles (nZVI) and isotherm and kinetic studies of amoxicillin removal in water, Environ. Sci. Pollut. Res. Int. 27 (29) (2020) 36732–36743. [8] A.M. Hidalgo, G. León, M. Gómez, M.D. Murcia, M.D. Bernal, S. Ortega, Polyamide nanofiltration membranes to remove aniline in aqueous solutions, Environ. Technol. 35 (9–12) (2014) 1175–1181. [9] A. Azari, R. Nabizadeh, A.H. Mahvi, S. Nasseri, Magnetic multi-walled carbon nanotubes-loaded alginate for treatment of industrial dye manufacturing effluent: Adsorption modelling and process optimisation by central composite face-central design, Int. J. Environ. Anal. Chem. 103 (7) (2023) 1509–1529. [10] A. Azari, R. Nabizadeh, A.H. Mahvi, S. Nasseri, Integrated Fuzzy AHP-TOPSIS for selecting the best color removal process using carbon-based adsorbent materials: Multi-criteria decision making vs. systematic review approaches and modeling of textile wastewater treatment in real conditions, Int. J. Environ. Anal. Chem. 102 (18) (2022) 7329–7344. [11] A. Azari, M. Malakoutian, K. Yaghmaeain, N. Jaafarzadeh, N. Shariatifar, G. Mohammadi, M.R. Masoudi, R. Sadeghi, S. Hamzeh, H. Kamani, Magnetic NH2-MIL-101(Al)/Chitosan nanocomposite as a novel adsorbent for the removal of azithromycin: Modeling and process optimization, Sci. Rep. 12 (1) (2022) 18990. [12] A. Azari, M. Abtahi, R. Saeedi, A.R. Yari, M.H. Vaziri, G. Mohammadi, Integrated ultrasound-assisted magnetic solid-phase extraction for efficient determination and pre-concentration of polycyclic aromatic hydrocarbons from high-consumption soft drinks and non-alcoholic beers in Iran, J. Sep. Sci. 45 (16) (2022) 3139–3149. [13] S.Y. Hashemi, M. Yegane Badi, H. Pasalari, A. Azari, H. Arfaeinia, A. Kiani, Degradation of Ceftriaxone from aquatic solution using a heterogeneous and reusable O3/UV/Fe3O4@TiO2 systems: Operational factors, kinetics and mineralisation, Int. J. Environ. Anal. Chem. 102 (18) (2022) 6904–6920. [14] H. Abdoallahzadeh, Y. Rashtbari, J.H.P. Américo-Pinheiro, A. Azari, S. Afshin, M. Fazlzadeh, Y. Poureshgh, Application of green and red local soils as a catalyst for catalytic ozonation of fulvic acid: Experimental parameters and kinetic, Biomass Convers. Biorefin. (2023) 1–10. [15] F. Rabiee, M. Sarkhosh, S. Azizi, A. Jahantigh, S.Y. Hashemi, M. Baziar, M. Gholami, A. Azari, The superior decomposition of 2, 4-Dinitrophenol under ultrasound-assisted Fe3O4@TiO2 magnetic nanocomposite: Process modeling and optimization, Effect of various oxidants and Degradation pathway studies, Int. J. Environ. Anal. Chem. (2022) 1–23. [16] M. Kermani, M. Dowlati, M. Gholami, H.R. Sobhi, A. Azari, A. Esrafili, M. Yeganeh, H.R. Ghaffari, A global systematic review, meta-analysis and health risk assessment on the quantity of Malathion, Diazinon and Chlorpyrifos in Vegetables, Chemosphere 270 (2021) 129382. [17] W.S. Chai, X.Y. Zhu, W. Liu, W.D. Zhang, Z.Y. Zhou, Z.Q. Ren, Extraction of aniline from wastewater: Equilibria, model, and fitting of apparent extraction equilibrium constants, RSC Adv. 6 (8) (2016) 6125–6132. [18] H. Chen, C.R. Sun, R.H. Liu, M.Z. Yuan, Z.H. Mao, Q. Wang, H.B. Zhou, H.N. Cheng, W.H. Zhan, Y.G. Wang, Enrichment and domestication of a microbial consortium for degrading aniline, J. Water Process. Eng. 42 (2021) 102108. [19] H.N. Cheng, M.Z. Yuan, Q. Zeng, H.B. Zhou, W.H. Zhan, H. Chen, Z.H. Mao, Y.G. Wang, Efficient reduction of reactive black 5 and Cr(Ⅵ) by a newly isolated bacterium of Ochrobactrum anthropi, J. Hazard. Mater. 406 (2021) 124641. [20] Q.Y. Liu, Y.X. Liu, X.J. Lu, Combined photo-Fenton and biological oxidation for the treatment of aniline wastewater, Procedia Environ. Sci. 12 (2012) 341–348. [21] Y. Chen, Y.J. Gao, T.T. Liu, Z. Zhang, W.S. Li, Activated persulfate by iron-carbon micro electrolysis used for refractory organics degradation in wastewater: A review, Water Sci. Technol. 86 (4) (2022) 690–713. [22] X.J. Cui, M.P. Zhang, Y.J. Ding, S.S. Sun, S.B. He, P. Yan, Enhanced nitrogen removal via iron-carbon micro-electrolysis in surface flow constructed wetlands: Selecting activated carbon or biochar? Sci. Total Environ. 815 (2022) 152800. [23] M.Y. Hu, T.L. Luo, Q.L. Li, Y.F. Xie, G. Liu, L.J. Wang, W.J.G.M. Peijnenburg, Remediation of low C/N wastewater by iron-carbon micro-electrolysis coupled with biological denitrification: Performance, mechanisms, and application, J. Water Process. Eng. 48 (2022) 102899. [24] Z.H. Sun, Z.H. Xu, Y.W. Zhou, D.F. Zhang, W.F. Chen, Effects of different scrap iron as anode in Fe-C micro-electrolysis system for textile wastewater degradation, Environ. Sci. Pollut. Res. Int. 26 (26) (2019) 26869–26882. [25] Z.H. Xu, Y.Q. Gao, Z.H. Sun, D.F. Zhang, Y.W. Zhou, W.F. Chen, New insights into the reinforced reduction performance of Fe0/C internal electrolysis activated by persulfate for p-nitrophenol removal, Chemosphere 254 (2020) 126899. [26] Y.H. Han, M.M. Qi, L. Zhang, Y.M. Sang, M.L. Liu, T.T. Zhao, J.F. Niu, S.Q. Zhang, Degradation of nitrobenzene by synchronistic oxidation and reduction in an internal circulation microelectrolysis reactor, J. Hazard. Mater. 365 (2019) 448–456. [27] D.W. Ying, J. Peng, X.Y. Xu, K. Li, Y.L. Wang, J.P. Jia, Treatment of mature landfill leachate by internal micro-electrolysis integrated with coagulation: A comparative study on a novel sequencing batch reactor based on zero valent iron, J. Hazard. Mater. 229-230 (2012) 426–433. [28] Y.H. Han, H. Li, M.L. Liu, Y.M. Sang, C.Z. Liang, J.Q. Chen, Purification treatment of dyes wastewater with a novel micro-electrolysis reactor, Sep. Purif. Technol. 170 (2016) 241–247. [29] X.Y. Yang, Interior microelectrolysis oxidation of polyester wastewater and its treatment technology, J. Hazard. Mater. 169 (1–3) (2009) 480–485. [30] Y.T. Zhang, H.B. Lun, Research on micro-electrolysis method to treat the chrome-containing steel wastewater, Appl. Mech. Mater. 448-453 (2013) 620–624. [31] M. Räsänen, T. Eerikäinen, H. Ojamo, Characterization and hydrodynamics of a novel helix airlift reactor, Chem. Eng. Process. 108 (2016) 44–57. [32] K. Wadaugsorn, S. Limtrakul, T. Vatanatham, P.A. Ramachandran, Hydrodynamic behaviors and mixing characteristics in an internal loop airlift reactor based on CFD simulation, Chem. Eng. Res. Des. 113 (2016) 125–139. [33] Y.H. Han, L. Zhang, M.L. Liu, J.F. Niu, Numerical simulation of the hydrodynamic behavior and the synchronistic oxidation and reduction in an internal circulation micro-electrolysis reactor, Chem. Eng. J. 381 (2020) 122709. [34] L. Zhang, M.Y. Wu, Y.H. Han, M.L. Liu, J.F. Niu, Structural parameter optimization for novel internal-loop iron-carbon micro-electrolysis reactors using computational fluid dynamics, Chin. J. Chem. Eng. 27 (4) (2019) 737–744. [35] M. Yeganeh, A. Azari, H.R. Sobhi, M. Farzadkia, A. Esrafili, M. Gholami, A comprehensive systematic review and meta-analysis on the extraction of pesticide by various solid phase-based separation methods: A case study of malathion, Int. J. Environ. Anal. Chem. 103 (5) (2023) 1068–1085. [36] B. Lai, Y.X. Zhou, H.K. Qin, C.Y. Wu, C.C. Pang, Y. Lian, J.X. Xu, Pretreatment of wastewater from acrylonitrile-butadiene-styrene (ABS) resin manufacturing by microelectrolysis, Chem. Eng. J. 179 (2012) 1–7. [37] C. Zhang, M.H. Zhou, G.B. Ren, X.M. Yu, L. Ma, J. Yang, F.K. Yu, Heterogeneous electro-Fenton using modified iron-carbon as catalyst for 2, 4-dichlorophenol degradation: Influence factors, mechanism and degradation pathway, Water Res. 70 (2015) 414–424. [38] W.W. Ma, Y.X. Han, C.Y. Xu, H.J. Han, W.C. Ma, H. Zhu, K. Li, D.X. Wang, Enhanced degradation of phenolic compounds in coal gasification wastewater by a novel integration of micro-electrolysis with biological reactor (MEBR) under the micro-oxygen condition, Bioresour. Technol. 251 (2018) 303–310. [39] X.Y. Zhu, X.J. Chen, Z.M. Yang, Y. Liu, Z.Y. Zhou, Z.Q. Ren, Investigating the influences of electrode material property on degradation behavior of organic wastewaters by iron-carbon micro-electrolysis, Chem. Eng. J. 338 (2018) 46–54. [40] Q. Zhang, Treatment of oilfield produced water using Fe/C micro-electrolysis assisted by zero-valent copper and zero-valent aluminium, Environ. Technol. 36 (1–4) (2015) 515–520. [41] M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta 76 (5) (2008) 965–977. [42] M.Z. Ahmad, S. Ehtisham-Ul-Haque, N. Nisar, K. Qureshi, A. Ghaffar, M. Abbas, J. Nisar, M. Iqbal, Detoxification of photo-catalytically treated 2-chlorophenol: Optimization through response surface methodology, Water Sci. Technol. 76 (2) (2017) 323–336. [43] K.J. Wan, G.Q. Wang, W.T. Bo, S.W. Xue, Z.Y. Miao, A sandwich structure of fulvic acid and PMIDA-modified LDHs for the simultaneous removal of Cu2+ and aniline in multicomponent solutions, Langmuir 39 (7) (2023) 2537–2547. [44] X.R. Wang, Y. Wang, Z. Shu, Y.W. Cao, X.M. Wang, F. Zhou, J.H. Huang, Phenolic hydroxyl-functionalized hyper-cross-linked polymers for efficient adsorptive removal of aniline, Sep. Purif. Technol. 305 (2023) 122443. [45] B.Y. Ma, W.J. Lv, J.Y. Li, C.W. Yang, Q. Tang, D. Wang, Promotion removal of aniline with electro-Fenton processes utilizing carbon nanotube 3D morphology modification of an Ag-loaded copper foam cathode, J. Water Process. Eng. 43 (2021) 102295. [46] Y. Li, J.Y. Zhu, J.Y. Hu, W. Li, Y.X. Li, D.Y. Zhang, Y.Q. Lan, Catalytic ozonation for effective degradation of aniline by sulfur-doped copper-nickel bimetallic oxide in aqueous solution, J. Environ. Chem. Eng. 9 (1) (2021) 104953. [47] S. Ahmadi, F. Mostafapour, E. Bazrafshan. Removal of Aniline and from Aqueous Solutions by Coagulation/Flocculation–Flotation[J]. Chemi. Sci. Int. J., 18(2017)1–10. [48] S. Ahmadi, F. Mostafapour, E. Bazrafshan, Removal of aniline and from aqueous solutions by coagulation/flocculation–flotation, Chem. Sci. Int. J. 18 (3) (2017) 1–10. [49] Y.H. Tu, L.F. Ren, J.H. Shao, Y.L. He, Simultaneous removal of aniline and antimony (Sb(V)) from textile wastewater using amidoxime-PAN/PLA nanofiber microsphere supported TiO2, Sep. Purif. Technol. 286 (2022) 120435. [50] J.P. Feng, Q. Zhang, B. Tan, M. Li, H.J. Peng, J. He, Y.J. Zhang, J.H. Su, Microbial community and metabolic characteristics evaluation in start-up stage of electro-enhanced SBR for aniline wastewater treatment, J. Water Process. Eng. 45 (2022) 102489. [51] H. Wang, L. Zhang, Y. Tian, Y. Jia, G.Z. Bo, L.T. Luo, L. Liu, G.Y. Shi, F.P. Li, Performance of nitrobenzene and its intermediate aniline removal by constructed wetlands coupled with the micro-electric field, Chemosphere 264 (Pt 1) (2021) 128456. [52] Y.H. Han, C.T. Wu, X.L. Fu, Z.M. Su, M.L. Liu, Sulfate removal mechanism by internal circulation iron-carbon micro-electrolysis, Sep. Purif. Technol. 279 (2021) 119762. [53] W.J. Sang, J.Q. Cui, Y.J. Feng, L.J. Mei, Q. Zhang, D. Li, W.J. Zhang, Degradation of aniline in aqueous solution by dielectric barrier discharge plasma: Mechanism and degradation pathways, Chemosphere 223 (2019) 416–424. |