[1] I.V. Vlassiouk, Y. Stehle, P.R. Pudasaini, R.R. Unocic, P.D. Rack, A.P. Baddorf, I.N. Ivanov, N.V. Lavrik, F. List, N. Gupta, K.V. Bets, B.I. Yakobson, S.N. Smirnov, Evolutionary selection growth of two-dimensional materials on polycrystalline substrates, Nat. Mater. 17 (4) (2018) 318–322. [2] L. Dong, Z. Chen, X. Zhao, J. Ma, S. Lin, M. Li, Y. Bao, L. Chu, K. Leng, H. Lu, K.P. Loh, A non-dispersion strategy for large-scale production of ultra-high concentration graphene slurries in water, Nat. Commun. 9 (1) (2018) 76. [3] M.A. Diasio, D.L. Green, The effect of solvent viscosity on production of few-layer graphene from liquid-phase exfoliation of graphite, MRS Adv. 4 (3–4) (2019) 241–247. [4] M. Yi, Z.G. Shen, A review on mechanical exfoliation for the scalable production of graphene, J. Mater. Chem. A 3 (22) (2015) 11700–11715. [5] U. Khan, A. O'Neill, M. Lotya, S. De, J.N. Coleman, High-concentration solvent exfoliation of graphene, Small 6 (7) (2010) 864–871. [6] K.R. Paton, E. Varrla, C. Backes, R.J. Smith, U. Khan, A. O'Neill, C. Boland, M. Lotya, O.M. Istrate, P. King, T. Higgins, S. Barwich, P. May, P. Puczkarski, I. Ahmed, M. Moebius, H. Pettersson, E. Long, J. Coelho, S.E. O'Brien, E.K. McGuire, B.M. Sanchez, G.S. Duesberg, N. McEvoy, T.J. Pennycook, C. Downing, A. Crossley, V. Nicolosi, J.N. Coleman, Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids, Nat. Mater. 13 (6) (2014) 624–630. [7] Y. Arao, Y. Mizuno, K. Araki, M. Kubouchi, Mass production of high-aspect-ratio few-layer-graphene by high-speed laminar flow, Carbon 102 (2016) 330–338. [8] H. Zhang, M. Chhowalla, Z.F. Liu, 2D nanomaterials: Graphene and transition metal dichalcogenides, Chem. Soc. Rev. 47 (9) (2018) 3015–3017. [9] M. Buzaglo, I.P. Bar, M. Varenik, L. Shunak, S. Pevzner, O. Regev, Graphite-to-graphene: Total conversion, Adv. Mater. 29 (8) (2017) 1603528. [10] C.L. Fu, X.N. Yang, Molecular simulation of interfacial mechanics for solvent exfoliation of graphene from graphite, Carbon 55 (2013) 350–360. [11] P. Yang, F. Liu, Understanding graphene production by ionic surfactant exfoliation: A molecular dynamics simulation study, J. Appl. Phys. 116 (1) (2014) 014304. [12] X.X. Wang, T. Yu, H.P. Yan, J.F. Ding, Z. Li, Z.Y. Qin, F.L. Chu, Application of stress wave theory for pyroshock isolation at spacecraft-rocket interface, Chin. J. Aeronaut. 34 (8) (2021) 75–86. [13] S. Zhou, J. Li, H. Yang, C. Qiao, C. Lu, J. Zhang, CFD-DEM simulation of the key unit in graphene production process, China Powder Sci. Technol. 28 (2022) 87-98. (in Chinese). [14] A.R. Khopkar, G.R. Kasat, A.B. Pandit, V.V. Ranade, Computational fluid dynamics simulation of the solid suspension in a stirred slurry reactor, Ind. Eng. Chem. Res. 45 (12) (2006) 4416–4428. [15] T. Shao, Y.Y. Hu, W.T. Wang, Y. Jin, Y. Cheng, Simulation of solid suspension in a stirred tank using CFD-DEM coupled approach, Chin. J. Chem. Eng. 21 (10) (2013) 1069–1081. [16] A. Stuparu, R. Susan-Resiga, A. Bosioc, CFD simulation of solid suspension for a liquid–solid industrial stirred reactor, Appl. Sci. 11 (12) (2021) 5705. [17] L.C. Wang, M.Y. Wang, Y. Qi, Y.X. Tian, Y.W. Gao, Study on the flow field characteristics of a liquid–solid–solid three-phase system and the influence of a draft tube in a stirred reactor, Ind. Eng. Chem. Res. 59 (48) (2020) 21231–21247. [18] G.J S. van der Gulik, J.G. Wijers, J.T.F. Keurentjes, Hydrodynamics in a horizontal stirred tank reactor, Ind. Eng. Chem. Res. 40 (3) (2001) 785–794. [19] G.R. Kasat, A.R. Khopkar, V.V. Ranade, A.B. Pandit, CFD simulation of liquid-phase mixing in solid–liquid stirred reactor, Chem. Eng. Sci. 63 (15) (2008) 3877–3885. [20] J.Y. Mo, Z.M. Gao, Y.Y. Bao, Z.P. Li, J.J. Derksen, Suspending a solid sphere in laminar inertial liquid flow-experiments and simulations, AIChE J. 61 (4) (2015) 1455–1469. [21] T.Z. Ye, Y. Yang, J.Y. Sun, Z.L. Huang, B.B. Jiang, L.J. Zhang, J. Wang, J.D. Wang, Y.R. Yang, Particle movement characteristics in a gas–solid vertical single helical ribbon agitated reactor, Chem. Eng. J. 429 (2022) 132349. [22] L. Fan, N. Xu, Simulation of orientation of fibre particles in a stirred tank and its influential factors, Powder Technol. 326 (2018) 237–246. [23] G. Lane, Predicting the energy dissipation rate in a mechanically stirred tank, In: Eleventh International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia, 2015. [24] A. Ducci, M. Yianneskis, Direct determination of energy dissipation in stirred vessels with two-point LDA, AIChE J. 51 (8) (2005) 2133–2149. [25] T.N. Zwietering, Suspending of solid particles in liquid by agitators, Chem. Eng. Sci. 8 (3–4) (1958) 244–253. [26] H.R. Wang, S.N. Wang, L.H. Guo, C.Z. Qiao, Y.J. Tian, Hierarchical ZSM-5 supported Ni catalysts for hydrodeoxygenation of phenolics: effect of reactant volumes and substituents, Chem. Eng. J. 455 (2023) 140647. [27] G. Baldi, R. Conti, E. Alaria, Complete suspension of particles in mechanically agitated vessels, Chem. Eng. Sci. 33 (1) (1978) 21–25. [28] S. Wang, Turbulence characteristics of off-bottom solids suspension in bottom of solid-liquid square stirred tank, Master Thesis Beijing University of Chemical Technology, China, 2014. (in Chinese) [29] J. Aubin, P. Mavros, D.F. Fletcher, J. Bertrand, C. Xuereb, Effect of axial agitator configuration (up-pumping, down-pumping, reverse rotation) on flow patterns generated in stirred vessels, Chem. Eng. Res. Des. 79 (8) (2001) 845–856. [30] R. Escudié, A. Liné, Experimental analysis of hydrodynamics in a radially agitated tank, AIChE J. 49 (3) (2003) 585–603. [31] Z. Gao, W. Yao, Y. Wang, L. Shi, J. Fu, Application of hot-film anemometer to gas–liquid two-phase flow study in aerated stirred tanks, Chem. Reac. Eng. Tech. 10 (1994) 90–94. (in Chinese). [32] J. Sheng, H. Meng, R.O. Fox, A large eddy PIV method for turbulence dissipation rate estimation, Chem. Eng. Sci. 55 (20) (2000) 4423–4434. [33] E.S. Nogueira, J.C. Pinto, A.S. Vianna Jr, Analysis of energy dissipation in stirred suspension polymerisation reactors using computational fluid dynamics, Can. J. Chem. Eng. 90 (4) (2012) 983–995. [34] F.J. Cabrejos, G.E. Klinzing, Incipient motion of solid particles in horizontal pneumatic conveying, Powder Technol. 72 (1) (1992) 51–61. [35] A.H. Ibrahim, P.F. Dunn, R.M. Brach, Microparticle detachment from surfaces exposed to turbulent air flow: Controlled experiments and modeling, J. Aerosol Sci. 34 (6) (2003) 765–782. [36] J. Aubin, D. F. Fletcher, C. Xuereb, Modeling turbulent flow in tirred tanks with CFD: The influence of the modeling approach, turbulence model and numerical scheme, Exp. Therm. Fluid. Sci. 28 (2004) 431–445. [37] B. Delacroix, J. Rastoueix, L. Fradette, F. Bertrand, B. Blais, CFD-DEM simulations of solid–liquid flow in stirred tanks using a non-inertial frame of reference, Chem. Eng. Sci. 230 (2021) 116137. [38] A. Bérard, G.S. Patience, B. Blais, Experimental methods in chemical engineering: Unresolved CFD-DEM, Can. J. Chem. Eng. 98 (2) (2020) 424–440. [39] B. Blais, M. Lassaigne, C. Goniva, L. Fradette, F. Bertrand, A semi-implicit immersed boundary method and its application to viscous mixing, Comput. Chem. Eng. 85 (2016) 136–146. [40] A. Brucato, M. Ciofalo, F. Grisafi, G. Micale, Numerical prediction of flow fields in baffled stirred vessels: A comparison of alternative modelling approaches, Chem. Eng. Sci. 53 (21) (1998) 3653–3684. [41] M. Mostek, A. Kukukova, M. Jahoda, V. Machoň, Comparison of different techniques for modelling of flow field and homogenization in stirred vessels, Chem. Pap. 59 (2005) 380–385. [42] G. Micale, F. Grisafi, L. Rizzuti, A. Brucato, CFD simulation of particle suspension height in stirred vessels, Chem. Eng. Res. Des. 82 (9) (2004) 1204–1213. [43] E.A. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations, J. Comput. Phys. 161 (1) (2000) 35–60. [44] T. Wang, Numerical and experimental study of gas-solid two phase flow with non-spherical particles in typical fluidied beds, Ph.D Thesis, Harbin Institute of Technology, Harbin, China, 2016. (in Chinese) [45] R.D. Mindlin, Compliance of elastic bodies in contact, J. Appl. Mech. 16 (3) (1949) 259–268. [46] R.D. Mindlin, H. Deresiewicz, Elastic spheres in contact under varying oblique forces, J. Appl. Mech. 20 (3) (1953) 327–344. [47] J. Katagiri, N. Hayashi, S. Koyanaka, Elementary-volume-scale simulations of inertial flow in sphere pack: Improvement of Di Felice drag model in high porosity, Mater. Trans. 61 (5) (2020) 1026–1031. [48] R. Mei, An approximate expression for the shear lift force on a spherical particle at finite Reynolds number, Int. J. Multiph. Flow 18 (1) (1992) 145–147. [49] B. Oesterlé, T.B. Dinh, Experiments on the lift of a spinning sphere in a range of intermediate Reynolds numbers, Exp. Fluids 25 (1) (1998) 16–22. [50] C. Thornton, C.W. Randall, Applications of theoretical contact mechanics to solid particle system simulation, Stud. Appl. Mech. 20 (1988) 133–142. [51] Y.J. Li, Y. Xu, C. Thornton, A comparison of discrete element simulations and experiments for ‘sandpiles’ composed of spherical particles, Powder Technol. 160 (3) (2005) 219–228. [52] S. Deshpande, P. Tallapragada, Particle slip velocity influences inertial focusing of particles in curved microchannels, Sci. Rep. 8 (1) (2018) 11852. |