[1] C.C. Satam, M.J. Realff, Comparison of two routes for the bio-based production of economically important C4 streams, J. Adv. Manuf. Process. 2 (3) (2020) e10054. [2] L.T. He, L. Liu, Y.Z. Huang, X.G. Miao, C. Len, Y.T. Wang, W.R. Yang, One-pot synthesis of dimethyl succinate from d-fructose using Amberlyst-70 catalyst, Mol. Catal. 508 (2021) 111584. [3] L.L. Yao, H.F. Pan, W.J. Tian, T.C. Hui, Z.P. Xie, J.G. Zhang, Production of succinate by a metabolic engineered Escherichia coli and its scale-up process in fermentor, Microbiol. China 45 (12) (2018) 2541–2551. [4] A. Mazière, P. Prinsen, A. García, R. Luque, C. Len, A review of progress in (bio)catalytic routes from/to renewable succinic acid, Biofuels Bioprod. Biorefin. 11 (5) (2017) 908–931. [5] J.S. Lu, J.W. Li, H. Gao, D.W. Zhou, H.X. Xu, Y.X. Cong, W.M. Zhang, F.X. Xin, M. Jiang, Recent progress on bio-succinic acid production from lignocellulosic biomass, World J. Microbiol. Biotechnol. 37 (1) (2021) 1–8. [6] M.I. Peñas, M. Criado-Gonzalez, A.M. de Ilarduya, A. Flores, J.M. Raquez, R. Mincheva, A.J. Müller, R. Hernández, Tunable enzymatic biodegradation of poly(butylene succinate): Biobased coatings and self-degradable films, Polym. Degrad. Stab. 211 (2023) 110341. [7] J. Xu, B.H. Guo, Microbial Succinic Acid, Its Polymer Poly (butylene succinate), and Applications, In: Plastics from Bacteria, G.Q. Chen ed., Springer 347–388 (2010). [8] X.Y. Wan, D.Z. Ren, Y.J. Liu, J. Fu, Z.Y. Song, F.M. Jin, Z.B. Huo, Facile synthesis of dimethyl succinate via esterification of succinic anhydride over ZnO in methanol, ACS Sustainable Chem. Eng. 6 (3) (2018) 2969–2975. [9] J. Xu, B.H. Guo, Microbial succinic acid, its polymer poly(butylene succinate), and applications, Plastics from bacteria: Natural functions and applications. 14 (2010) 347–388. [10] H. Shirahama, Y. Kawaguchi, M.S. Aludin, H. Yasuda, Synthesis and enzymatic degradation of high molecular weight aliphatic polyesters, J. Appl. Polym. Sci. 80 (3) (2001) 340–347. [11] I. Bechthold, K. Bretz, S. Kabasci, R. Kopitzky, A. Springer, Succinic acid: A new platform chemical for biobased polymers from renewable resources, Chem. Eng. Technol. 31 (5) (2008) 647–654. [12] A. Helal, R. Kreimerman, S. Gutiérrez, A.I. Torres, A market-driven algorithm for the assessment of promising bio-based chemicals, AlChE. J. 65 (12) (2019) e16775. [13] S. Okino, R. Noburyu, M. Suda, T. Jojima, M. Inui, H. Yukawa, An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain, Appl. Microbiol. Biotechnol. 81 (3) (2008) 459–464. [14] S. D'Ambrosio, M. Ventrone, A. Alfano, C. Schiraldi, D. Cimini, Microbioreactor (micro-Matrix) potential in aerobic and anaerobic conditions with different industrially relevant microbial strains, Biotechnol. Prog. 37 (5) (2021) e3184. [15] J. Wang, J.F. Zhu, G.N. Bennett, K.Y. San, Succinate production from different carbon sources under anaerobic conditions by metabolic engineered Escherichia coli strains, Metab. Eng. 13 (3) (2011) 328–335. [16] A. Orjuela, A.J. Yanez, A. Santhanakrishnan, C.T. Lira, D.J. Miller, Kinetics of mixed succinic acid/acetic acid esterification with Amberlyst 70 ion exchange resin as catalyst, Chem. Eng. J. 188 (2012) 98–107. [17] S.J. Lee, H. Song, S.Y. Lee, Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production, Appl. Environ. Microbiol. 72 (3) (2006) 1939–1948. [18] C.S. López-Garzón, M. Ottens, L.A.M. van der Wielen, A.J.J. Straathof, Direct downstream catalysis: From succinate to its diethyl ester without intermediate acidification, Chem. Eng. J. 200-202 (2012) 637–644. [19] C.S. López-Garzón, L.A.M. van der Wielen, A.J.J. Straathof, Green upgrading of succinate using dimethyl carbonate for a better integration with fermentative production, Chem. Eng. J. 235 (2014) 52–60. [20] C.I. Cabrera-Rodríguez, L.A.M. van der Wielen, A.J.J. Straathof, Separation and catalysis of carboxylates: Byproduct reduction during the alkylation with dimethyl carbonate, Ind. Eng. Chem. Res. 54 (44) (2015) 10964–10973. [21] B.A.V. Santos, V.M.T.M. Silva, J.M. Loureiro, A.E. Rodrigues, Review for the direct synthesis of dimethyl carbonate, ChemBioEng Rev. 1 (5) (2014) 214–229. [22] L. Jeffry, M.Y. Ong, S. Nomanbhay, M. Mofijur, M. Mubashir, P.L. Show, Greenhouse gases utilization: A review, Fuel 301 (2021) 121017. [23] S. Solomon, G.K. Plattner, R. Knutti, P. Friedlingstein, Irreversible climate change due to carbon dioxide emissions, Proc. Natl. Acad. Sci. U. S. A. 106 (6) (2009) 1704–1709. [24] C.S. López-Garzón, L.A.M. van der Wielen, A.J.J. Straathof, Ester production from bio-based dicarboxylates via direct downstream catalysis: Succinate and 2, 5-furandicarboxylate dimethyl esters, RSC Adv. 6 (5) (2016) 3823–3829. [25] U. Kamran, S.J. Park, Chemically modified carbonaceous adsorbents for enhanced CO2 capture: A review, J. Clean. Prod. 290 (2021) 125776. [26] A.H. Assen, Y. Belmabkhout, K. Adil, A. Lachehab, H. Hassoune, H. Aggarwal, Advances on CO2 storage. Synthetic porous solids, mineralization and alternative solutions, Chem. Eng. J. 419 (2021) 129569. [27] U. Savino, A. Sacco, Tandem devices for simultaneous CO2 reduction at the cathode and added-value products formation at the anode, J. CO2 Util. 52 (2021) 101697. [28] M. Zhang, Y.H. Xu, B.L. Williams, M. Xiao, S.J. Wang, D.M. Han, L.Y. Sun, Y.Z. Meng, Catalytic materials for direct synthesis of dimethyl carbonate (DMC) from CO2, J. Clean. Prod. 279 (2021) 123344. [29] B.A.V. Santos, C.S.M. Pereira, V.M.T.M. Silva, J.M. Loureiro, A.E. Rodrigues, Kinetic study for the direct synthesis of dimethyl carbonate from methanol and CO2 over CeO2 at high pressure conditions, Appl. Catal. A 455 (2013) 219–226. [30] B.A.V. Santos, V.M.T.M. Silva, J.M. Loureiro, D. Barbosa, A.E. Rodrigues, Modeling of physical and chemical equilibrium for the direct synthesis of dimethyl carbonate at high pressure conditions, Fluid Phase Equilib. 336 (2012) 41–51. [31] C.I. Cabrera-Rodríguez, L. Paltrinieri, L.C.P.M. de Smet, L.A.M. van der Wielen, A.J.J. Straathof, Recovery and esterification of aqueous carboxylates by using CO2-expanded alcohols with anion exchange, Green Chem. 19 (3) (2017) 729–738. [32] P.P. Barve, S.P. Kamble, J.B. Joshi, M.Y. Gupte, B.D. Kulkarni, Preparation of pure methyl esters from corresponding alkali metal salts of carboxylic acids using carbon dioxide and methanol, Ind. Eng. Chem. Res. 51 (4) (2012) 1498–1505. [33] K.N. West, C. Wheeler, J.P. McCarney, K.N. Griffith, D. Bush, C.L. Liotta, C.A. Eckert, in situ formation of alkylcarbonic acids with CO2, J. Phys. Chem. A 105 (16) (2001) 3947–3948. [34] J.L. Gohres, A.T. Marin, J.E. Lu, C.L. Liotta, C.A. Eckert, Spectroscopic investigation of alkylcarbonic acid formation and dissociation in CO2-expanded alcohols, Ind. Eng. Chem. Res. 48 (3) (2009) 1302–1306. [35] A.K. Kolah, N.S. Asthana, D.T. Vu, C.T. Lira, D.J. Miller, Reaction kinetics for the heterogeneously catalyzed esterification of succinic acid with ethanol, Ind. Eng. Chem. Res. 47 (15) (2008) 5313–5317. [36] D.S.M. Constantino, C.S.M. Pereira, R.P.V. Faria, A.F.P. Ferreira, J.M. Loureiro, A.E. Rodrigues, Synthesis of butyl acrylate in a fixed-bed adsorptive reactor over Amberlyst 15, AlChE. J. 61 (4) (2015) 1263–1274. [37] W.T. Han, Z.W. Han, X.C. Gao, Z. Hong, X.G. Li, H. Li, X.H. Gu, X. Gao, Inter-integration reactive distillation with vapor permeation for ethyl levulinate production: Equipment development and experimental validating, AlChE. J. 68 (2) (2022) e17441. |