[1] C.N. Zou, Q. Zhao, G.S. Zhang, B. Xiong, Energy revolution: From a fossil energy era to a new energy era, Nat. Gas Ind. B 3 (1) (2016) 1–11. [2] K. Mabuchi, A numerical investigation of changes in energy and carbon cycle balances under vegetation transition due to deforestation in the Asian tropical region, J. Meteorol. Soc. Jpn. Ser II 89 (1) (2011) 47–65. [3] S. Lawal, C. Lennard, B. Hewitson, Response of southern African vegetation to climate change at 1.5 and 2.0° global warming above the pre-industrial level, Clim. Serv. 16 (2019) 100134. [4] J.M. Buth, Ocean acidification: Investigation and presentation of the effects of elevated carbon dioxide levels on seawater chemistry and calcareous organisms, J. Chem. Educ. 93 (4) (2016) 718–721. [5] F. Melzner, F.C. Mark, B.A. Seibel, L. Tomanek, Ocean acidification and coastal marine invertebrates: Tracking CO2 effects from seawater to the cell, Annu. Rev. Mar. Sci. 12 (2020) 499–523. [6] R. York, S. Elizabeth Bell, Energy transitions or additions? Energy Res. Soc. Sci. 51 (2019) 40–43. [7] X.Y. Jin, M.Y. Li, W.Y. Zhang, J.W. Cui, F.S. Meng, Factors influencing the development ability of intelligent manufacturing of new energy vehicles based on a structural equation model, ACS Omega 5 (29) (2020) 18262–18272. [8] M.A. Thompson, R. Baker, N.H. Yong, Technical and economic evaluation of an off-grid solar desalination system in Myanmar, J. Water Supply Res. Technol. Aqua 65 (4) (2016) 354–360. [9] L.P. Duan, A. Uddin, Progress in stability of organic solar cells, Adv. Sci. (Weinh) 7 (11) (2020) 1903259. [10] M. Esteban, D. Leary, Current developments and future prospects of offshore wind and ocean energy, Appl. Energy 90 (1) (2012) 128–136. [11] R. Kikuchi, CO2 recovery and reuse in the energy sector, energy resource development and others: Economic and technical evaluation of large-scale CO2 recycling, Energy Environ. 14 (4) (2003) 383–395. [12] R. Sassi, R.R. Bond, A. Cairns, D.D. Finlay, D. Guldenring, G. Libretti, L. Isola, M. Vaglio, R. Poeta, M. Campana, C. Cuccia, F. Badilini, PDF-ECG in clinical practice: A model for long-term preservation of digital 12-lead ECG data, J. Electrocardiol. 50 (6) (2017) 776–780. [13] Y.C. Huang, L.F. Chen, Y.H. Huang, C.C. Hu, C.H. Wu, R.J. Jeng, Recyclable nanocomposites for carbon dioxide fixation and membrane separation using waste polycarbonate, Chem. Eng. J. 452 (2023) 139262. [14] J. Schrier, Carbon dioxide separation with a two-dimensional polymer membrane, ACS Appl. Mater. Interfaces 4 (7) (2012) 3745–3752. [15] H.B. Ding, Y.Y. Dong, Y. Zhang, Y. Yang, C. Wen, A potential strategy of carbon dioxide separation using supersonic flows, Sep. Purif. Technol. 303 (2022) 122153. [16] C. Wen, B. Li, H. Ding, M. Akrami, H. Zhang, Y. Yang, Thermodynamics analysis of CO2 condensation in supersonic flows for the potential of clean offshore natural gas processing, Appl. Energy 310 (2022) 118523. [17] J.N. Chen, Z. Huang, W.M. Jiang, Non-equilibrium condensation of carbon dioxide in flue gas with the coexistence of swirl flows and supersonic flows, Int. Commun. Heat Mass Transf. 138 (2022) 106369. [18] J.B. Lin, T.T.T. Nguyen, R. Vaidhyanathan, J. Burner, J.M. Taylor, H. Durekova, F. Akhtar, R.K. Mah, O. Ghaffari-Nik, S. Marx, N. Fylstra, S.S. Iremonger, K.W. Dawson, P. Sarkar, P. Hovington, A. Rajendran, T.K. Woo, G.K.H. Shimizu, A scalable metal–organic framework as a durable physisorbent for carbon dioxide capture, Science 374 (6574) (2021) 1464–1469. [19] R.S. Liu, X.D. Shi, C.T. Wang, Y.Z. Gao, S. Xu, G.P. Hao, S.Y. Chen, A.H. Lu, Advances in post-combustion CO2 capture by physical adsorption: From materials innovation to separation practice, ChemSusChem 14 (6) (2021) 1428–1471. [20] M. Ishibashi, H. Ota, N. Akutsu, S. Umeda, M. Tajika, J. Izumi, A. Yasutake, T. Kabata, Y. Kageyama, Technology for removing carbon dioxide from power plant flue gas by the physical adsorption method, Energy Convers. Manag. 37 (6–8) (1996) 929–933. [21] R. Geng, D.Q. Lu, Y. Lai, S.F. Wu, Z.A. Xu, W. Zhang, Peptide nanotube for carbon dioxide chemisorption with regeneration properties and water compatibility, Chem. Commun. 55 (26) (2019) 3797–3800. [22] A.L. Yaumi, M.Z.A. Bakar, B.H. Hameed, Reusable nitrogen-doped mesoporous carbon adsorbent for carbon dioxide adsorption in fixed-bed, Energy 138 (2017) 776–784. [23] Y.H. Cai, W.L. Wang, L. Li, Z.F. Wang, S.Y. Wang, H. Ding, Z.G. Zhang, L.Y. Sun, W.X. Wang, Effective capture of carbon dioxide using hydrated sodium carbonate powders, Materials 11 (2) (2018) 183. [24] S. Valluri, S.K. Kawatra, Use of frothers to improve the absorption efficiency of dilute sodium carbonate slurry for post combustion CO2 capture, Fuel Process. Technol. 212 (2021) 106620. [25] D. Gómez-Díaz, A. Muñiz-Mouro, J.M. Navaza, A. Rumbo, Diamine versus amines blend for CO2 chemical absorption, AIChE J. 67 (1) (2021) e17071. [26] W.Y. Gao, C.Y. Tsai, L. Wojtas, T. Thiounn, C.C. Lin, S.Q. Ma, Interpenetrating metal–metalloporphyrin framework for selective CO2 uptake and chemical transformation of CO2, Inorg. Chem. 55 (15) (2016) 7291–7294. [27] B. Cen, R. Yang, K. Li, C. Lv, B. Liang, Large capacity and rapid rate of ion removal from synthetic municipal wastewater via CDI using chitosan-based nitrogen-doped porous carbon electrode, Process. Saf. Environ. Prot. 147 (2021) 857–865. [28] F. Gao, Y.Q. Wang, X. Wang, S.H. Wang, Adsorptive separation of ethylene/ethane mixtures with CuCl@HY adsorbent: Equilibrium and reversibility, J. Porous Mater. 24 (3) (2017) 713–719. [29] S. Grangeon, N.C.M. Marty, N. Maubec, F. Warmont, F. Claret, Selenate sorption by hydrated calcium aluminate (AFm): Evidence for sorption reversibility and implication for the modeling of anion retention, ACS Earth Space Chem. 4 (2) (2020) 229–240. [30] Z.B. Liu, A. Esmaeili, H.X. Zhang, D. Wang, Y. Lu, L. Shao, Modeling and experimental studies on carbon dioxide absorption with sodium hydroxide solution in a rotating zigzag bed, Processes 10 (3) (2022) 614. [31] B. Aghel, E. Heidaryan, S. Sahraie, S. Mir, Application of the microchannel reactor to carbon dioxide absorption, J. Clean. Prod. 231 (2019) 723–732. [32] S.N. de Oliveira Almeida Morais, C.E. da Silva Lobo, C.E. de Araújo Padilha, D.F. de Santana Souza, J.R. de Souza, J.A. de Oliveira, J. Alberto Chavez Ruiz, Removal of carbon dioxide from a multicomponent gas mixture by absorption using a Y-type microreactor, Ind. Eng. Chem. Res. 60 (30) (2021) 11590–11599. [33] Y.S. Wang, Y.N. Dong, L.L. Zhang, G.W. Chu, H.K. Zou, B.C. Sun, X.F. Zeng, Carbon dioxide capture by non-aqueous blend in rotating packed bed reactor: Absorption and desorption investigation, Sep. Purif. Technol. 269 (2021) 118714. [34] B. Aghel, S. Sahraie, E. Heidaryan, K. Varmira, Experimental study of carbon dioxide absorption by mixed aqueous solutions of methyl diethanolamine (MDEA) and piperazine (PZ) in a microreactor, Process. Saf. Environ. Prot. 131 (2019) 152–159. [35] N.N. Gao, J.X. Wang, L. Shao, J.F. Chen, Removal of carbon dioxide by absorption in microporous tube-in-tube microchannel reactor, Ind. Eng. Chem. Res. 50 (10) (2011) 6369–6374. [36] W. Zeng, C. Jia, H.X. Luo, G.D. Yang, G.Q. Yang, Z.B. Zhang, Microbubble-dominated mass transfer intensification in the process of ammonia-based flue gas desulfurization, Ind. Eng. Chem. Res. 59 (44) (2020) 19781–19792. [37] S. Srivastava, A.K. Srivastava, Production of the biopesticide azadirachtin by hairy root cultivation of Azadirachta indica in liquid-phase bioreactors, Appl. Biochem. Biotechnol. 171 (6) (2013) 1351–1361. [38] V.N. Lima, C.S.D. Rodrigues, E.F.S. Sampaio, L.M. Madeira, Insights into real industrial wastewater treatment by Fenton’s oxidation in gas bubbling reactors, J. Environ. Manag. 265 (2020) 110501. [39] J.B. Joshi, A.B. Pandit, K.L. Kataria, R.P. Kulkarni, A.N. Sawarkar, D. Tandon, Y. Ram, M.M. Kumar, Petroleum residue upgradation via visbreaking: A review, Ind. Eng. Chem. Res. 47 (23) (2008) 8960–8988. [40] X.Y. Guo, Z.L. Huang, J.Y. Sun, Y. Shuai, Y. Yang, Z.W. Liao, J.D. Wang, Y.R. Yang, Evolution and interaction characteristics of liquid flow and bubbles in a jet bubbling column, Ind. Eng. Chem. Res. 59 (48) (2020) 21217–21230. [41] F.M. Al-Oufi, I.W. Cumming, C.D. Rielly, Destabilisation of homogeneous bubbly flow in an annular gap bubble column, Can. J. Chem. Eng. 88 (4) (2010) 482–490. [42] D. Feng, J.H. Ferrasse, A. Soric, O. Boutin, Bubble characterization and gas–liquid interfacial area in two phase gas–liquid system in bubble column at low Reynolds number and high temperature and pressure, Chem. Eng. Res. Des. 144 (2019) 95–106. [43] F. Hernandez-Alvarado, D.V. Kalaga, D. Turney, S. Banerjee, J.B. Joshi, M. Kawaji, Void fraction, bubble size and interfacial area measurements in co-current downflow bubble column reactor with microbubble dispersion, Chem. Eng. Sci. 168 (2017) 403–413. [44] O. Levenspiel, Chemical reaction engineering, Ind. Eng. Chem. Res. 38 (11) (1999) 4140–4143. [45] F.N. Gonawan, M.Z. Abu Bakar, K. Abd Karim, A.H. Kamaruddin, The effect of mass transfer on reaction rates during immobilized β-galactosidase-catalyzed conversion of lactose in hollow fiber membrane, Chem. Eng. Commun. 206 (5) (2019) 630–646. [46] O.P. Klenov, S.A. Pokrovskaya, N.A. Chumakova, S.N. Pavlova, V.A. Sadykov, A.S. Noskov, Effect of mass transfer on the reaction rate in a monolithic catalyst with porous walls, Catal. Today 144 (3–4) (2009) 258–264. [47] J.A. Sarabia-Alonso, J.G. Ortega-Mendoza, J.C. Ramírez-San-Juan, P. Zaca-Morán, J. Ramírez-Ramírez, A. Padilla-Vivanco, F.M. Muñoz-Pérez, R. Ramos-García, Optothermal generation, trapping, and manipulation of microbubbles, Opt. Express, 28 (12) (2020) 17672–17682. [48] J.O. Hanotu, H. Bandulasena, W.B. Zimmerman, Aerator design for microbubble generation, Chem. Eng. Res. Des. 123 (2017) 367–376. [49] T. Kobayashi, S. Fujioka, S. Tanaka, K.Terasaka, Microbubble generation with rapid dissolution of ammonia (NH3)-hydrogen (H2) mixed gas fed from a nozzle into water, Chem. Eng. Sci. 248 (2022) 117155. [50] C. Jia, H. Shen, Y.Y. Xu, X.B. Hu, G.Q. Yang, Z.B. Zhang, The effect of inorganic salt on multiphase flow characteristics in a microbubble column: A focus on the ionic strength, Asia Pac. J. Chem. Eng. 17 (1) (2022) e2720. [51] A.W. Pacek, C.C. Man, A.W. Nienow, On the Sauter mean diameter and size distributions in turbulent liquid/liquid dispersions in a stirred vessel, Chem. Eng. Sci. 53 (11) (1998) 2005–2011. [52] P.B. Kowalczuk, J. Drzymala, Physical meaning of the Sauter mean diameter of spherical particulate matter, Part. Sci. Technol. 34 (6) (2016) 645–647. [53] W. Resnick, B. Gal-Or, Gas–liquid dispersions, Adv. Chem. Eng. 7 (1968) 295-395. [54] W.K. Lewis, W.G. Whitman, Principles of gas absorption, Ind. Eng. Chem. 16 (12) (1924) 1215–1220. [55] O. Stenberg, N.H. Schöön, Aspects of the graphical determination of the volumetric mass-transfer coefficient (kLa) in liquid-phase hydrogenation in a slurry reactor, Chem. Eng. Sci. 40 (12) (1985) 2311–2319. [56] P.V. Danckwerts, Significance of liquid-film coefficients in gas absorption, Ind. Eng. Chem. 43 (6) (1951) 1460–1467. [57] M.M. Sharma, P.V. Danckwerts, Fast reactions of CO2 in alkaline solutions—(a) Carbonate buffers with arsenite, formaldehyde and hypochlorite as catalysts (b) Aqueous monoisopropanolamine (1-amino-2-propanol) solutions, Chem. Eng. Sci. 18 (12) (1963) 729–735. [58] H. Knuutila, O. Juliussen, H.F. Svendsen, Kinetics of the reaction of carbon dioxide with aqueous sodium and potassium carbonate solutions, Chem. Eng. Sci. 65 (23) (2010) 6077–6088. [59] C.Z. Tang, T.J. Heindel, Estimating gas holdup via pressure difference measurements in a cocurrent bubble column, Int. J. Multiph. Flow 32 (7) (2006) 850–863. [60] C.O. Gomez, A. Uribe-Salas, J.A. Finch, B.J. Huls, Gas holdup measurement in flotation columns using electrical conductivity, Can. Metall. Q. 30 (4) (1991) 201–205. [61] A.J. Sultan, L.S. Sabri, H.S. Majdi, S.K. Jebur, M.H. Al-Dahhan, Study of gas holdup distribution in cylindrical split airlift reactor by using gamma-ray densitometry (GRD), Processes 10 (5) (2022) 910. [62] K. Bhunia, G. Kundu, D. Mukherjee, Gas holdup characteristics in a flotation column with different solids, Sep. Sci. Technol. 52 (7) (2017) 1298–1309. [63] X.H. Lin, F.B. Bao, C.X. Tu, Z.Q. Yin, X.Y. Gao, J.Z. Lin, Dynamics of bubble formation in highly viscous liquid in co-flowing microfluidic device, Microfluid. Nanofluid. 23 (5) (2019) 1–9. [64] H.G. Zhang, Z.J. Guo, X.R. Zhang, Surface enrichment of ions leads to the stability of bulk nanobubbles, Soft Matter 16 (23) (2020) 5470–5477. [65] K.Y. Guo, T.F. Wang, Y.F. Liu, J.F. Wang, CFD-PBM simulations of a bubble column with different liquid properties, Chem. Eng. J. 329 (2017) 116–127. [66] D.A. Lewis, J.F. Davidson, Bubble sizes produced by shear and turbulence in a bubble column, Chem. Eng. Sci. 38 (1) (1983) 161–167. [67] B. Petkova, S. Tcholakova, N. Denkov, Foamability of surfactant solutions: Interplay between adsorption and hydrodynamic conditions, Colloids Surf. A Physicochem. Eng. Aspects 626 (2021) 127009. |