[1] H. Zhou, X. Yu, S. Jing, H. Zhou, W.J. Lan, S.W. Li, Measurement of droplet breakage in a pump-mixer, Chem. Eng. Sci. 195(2019)23-38. [2] K. Gottliebsen, B. Grinbaum, D.H. Chen, G.W. Stevens, The use of pulsed perforated plate extraction column for recovery of sulphuric acid from copper tank house electrolyte bleeds, Hydrometallurgy 58(3)(2000)203-213. [3] H.J. Bart, Extraction columns in hydrometallurgy, Hydrometallurgy 78(1-2)(2005)21-29. [4] N.B. Wyatt, T.J. O'Hern, B. Shelden, Drop-size distributions and spatial distributions in an annular centrifugal contactor, AlChE. J. 59(6)(2013)2219-2226. [5] S.H. Yin, K.H. Chen, C. Srinivasakannan, S.W. Li, J.W. Zhou, J.H. Peng, L.B. Zhang, Microfluidic solvent extraction of Ce (III) and Pr (III) from a chloride solution using EHEHPA (P507) in a serpentine microreactor, Hydrometallurgy 175(2018)266-272. [6] R.L. Yadav, A.W. Patwardhan, Design aspects of pulsed sieve plate columns, Chem. Eng. J. 138(1-3)(2008)389-415. [7] C. Korb, H.J. Bart, Solvent extraction in columns in a droplet breakage domain, Hydrometallurgy 173(2017)71-79. [8] W. Li, Y. Wang, K.A. Mumford, K.H. Smith, G.W. Stevens, Prediction of holdup and drop size distribution in a disc-doughnut pulsed column with tenova kinetics internals for the water-Alamine 336 system, Hydrometallurgy 181(2018)82-90. [9] A. Kumar, S. Hartland, Prediction of drop size in pulsed perforated-plate extraction columns, Chem. Eng. Commun. 44(1-6)(1986)163-182. [10] H. Parmar, V. Pareek, C.M. Phan, G.M. Evans, Influence of jet-jet interaction on droplet size and jet instability in immiscible liquid-liquid system, Chem. Eng. Sci. 123(2015)247-254. [11] J.Q. Liu, S.W. Li, S. Jing, Hydraulic performance of an annular pulsed disc-and-doughnut column, Solvent Extr. Ion Exch. 33(2015)385-406. [12] D. Tsaoulidis, P. Angeli, Liquid-liquid dispersions in intensified impinging-jets cells, Chem. Eng. Sci. 171(2017)149-159. [13] H. Yi, Y. Wang, K.H. Smith, W.Y. Fei, G.W. Stevens, Hydrodynamic performance of a pulsed solvent extraction column with novel ceramic internals:Holdup and drop size, Ind. Eng. Chem. Res. 56(4)(2017)999-1007. [14] J.Q. Liu, S.W. Li, Y.Y. Wang, S. Jing, Extraction of uranium nitrate with 30%(v/v) tributyl phosphate in kerosene in an pilot annular pulsed disc-and-doughnut column-Part I:Hydraulic performance, Solvent Extr. Ion Exch. 35(1)(2017)19-34. [15] A.B. Jahya, G.W. Stevens, H.R.C. Pratt, Pulsed disc-and-doughnut column performance, Solvent Extr. Ion Exch. 27(1)(2009)63-82. [16] M. Torab-Mostaedi, A. Ghaemi, M. Asadollahzadeh, Flooding and drop size in a pulsed disc and doughnut extraction column, Chem. Eng. Res. Des. 89(12)(2011)2742-2751. [17] R. Torkaman, J. Safdari, M. Torab-Mostaedi, M.A. Moosavian, M. Asadollahzadeh, Extraction of samarium and gadolinium from aqueous nitrate solution with D2EHPA in a pulsed disc and doughnut column, J. Taiwan Inst. Chem. Eng. 48(2015)18-25. [18] Y. Wang, K.H. Smith, K.A. Mumford, H. Yi, L.N. Wang, G.W. Stevens, Prediction of drop size in a pulsed and non-pulsed disc and doughnut solvent extraction column, Chem. Eng. Res. Des. 109(2016)667-674. [19] J.Q. Liu, S.W. Li, S. Jing, Scale-up study on the performance of annular pulsed disc-and-doughnut columns, Solvent Extr. Ion Exch. 34(5)(2016)485-501. [20] J.Q. Liu, S.W. Li, S. Jing, Axial mixing and mass transfer performance of an annular pulsed disc-and-doughnut column, Solvent Extr. Ion Exch. 33(2015)592-606. [21] A. Kumar, S. Hartland, Gravity settling in liquid/liquid dispersions, Can. J. Chem. Eng. 63(3)(1985)368-376. [22] M. Lorenz, H. Haverland, A. Vogelphol, Fluid dynamics of pulsed sieve plate extraction columns, Chem. Eng. Technol. 13(1)(1990)411-422. [23] E. Aufderheide, A. Vogelpohl, A convective model to interpret dispersed-phase residence time measurements in pulsed liquid/liquid extractors, Chem. Eng. Sci. 41(7)(1986)1747-1757. [24] V.G. Lade, A.D. Pakhare, V.K. Rathod, Mass transfer studies in pulsed sieve plate extraction column for the removal of tributyl phosphate from aqueous nitric acid, Ind. Eng. Chem. Res. 53(12)(2014)4812-4820. [25] A.E. Ferreira, S. Agarwal, R.M. Machado, M.L.F. Gameiro, S.M.C. Santos, M.T.A. Reis, M.R.C. Ismael, M.J.N. Correia, J.M.R. Carvalho, Extraction of copper from acidic leach solution with Acorga M5640 using a pulsed sieve plate column, Hydrometallurgy 104(1)(2010)66-75. [26] M.R. Usman, H. Sattar, S.N. Hussain, H. Muhammad, A. Asghar, W. Afzal, Drop size in a liquid pulsed sieve-plate extraction column, Braz. J. Chem. Eng. 26(4)(2009)677-683. [27] A. Bahmanyar, N. Khoobi, M.R. Mozdianfard, H. Bahmanyar, The influence of nanoparticles on hydrodynamic characteristics and mass transfer performance in a pulsed liquid-liquid extraction column, Chem. Eng. Process. 50(11-12)(2011)1198-1206. [28] K. Sreenivasulu, D. Venkatanarasaiah, Y.B.G. Varma, Drop size distributions in liquid pulsed columns, Bioprocess Eng. 17(3)(1997)189-195. [29] M.H.S. Segler, M. Preuss, M.P. Waller, Planning chemical syntheses with deep neural networks and symbolic AI, Nature 555(7698)(2018)604-610. [30] H. Xiao, J.L. Wu, J.X. Wang, R. Sun, C.J. Roy, Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier-Stokes simulations:A data-driven, physics-informed Bayesian approach, J. Comput. Phys. 324(2016)115-136. [31] X. Li, L. Peng, Y. Hu, J. Shao, T.H. Chi, Deep learning architecture for air quality predictions, Environ. Sci. Pollut. Res. 23(22)(2016)22408-22417. [32] P. Raccuglia, K.C. Elbert, P.D.F. Adler, C. Falk, M.B. Wenny, A. Mollo, M. Zeller, S.A. Friedler, J. Schrier, A.J. Norquist, Machine-learning-assisted materials discovery using failed experiments, Nature 533(7601)(2016)73-76. [33] D.A.C. Beck, J.M. Carothers, V.R. Subramanian, J. Pfaendtner, Data science:Accelerating innovation and discovery in chemical engineering, AIChE. J. 62(5)(2016)1402-1416. [34] L. Tian, Z.F. Xu, L.J. Chen, Y. Liu, T.A. Zhang, Study on oxygen gas holdup and kinetics using various types of paddles during marmatite leaching process, Hydrometallurgy 180(2018)158-171. [35] S. Azizi, M.M. Awad, E. Ahmadloo, Prediction of water holdup in vertical and inclined oil-water two-phase flow using artificial neural network, Int. J. Multiph. Flow 80(2016)181-187. [36] A. Behkish, R. Lemoine, L. Sehabiague, R. Oukaci, B.I. Morsi, Prediction of the gas holdup in industrial-scale bubble columns and slurry bubble column reactors using back-propagation neural networks, Int. J. Chem. React. Eng. 3(1)(2005) A53. [37] A. Shaikh, M. Al-Dahhan, Development of an artificial neural network correlation for prediction of overall gas holdup in bubble column reactors, Chem. Eng. Process. 42(8-9)(2003)599-610. [38] A.B. Gandhi, J.B. Joshi, Unified correlation for overall gas hold-up in bubble column reactors for various gas-liquid systems using hybrid genetic algorithm-support vector regression technique, Can. J. Chem. Eng. 88(5)(2010)758-776. [39] A.B. Gandhi, J.B. Joshi, V.K. Jayaraman, B.D. Kulkarni, Development of support vector regression (SVR)-based correlation for prediction of overall gas hold-up in bubble column reactors for various gas-liquid systems, Chem. Eng. Sci. 62(24)(2007)7078-7089. [40] R. Lemoine, B.I. Morsi, An algorithm for predicting the hydrodynamic and mass transfer parameters in agitated reactors, Chem. Eng. J. 114(1-3)(2005)9-31. [41] S. Bansal, S. Roy, F. Larachi, Support vector regression models for trickle bed reactors, Chem. Eng. J. 207-208(2012)822-831. [42] A.B. Gandhi, P.P. Gupta, J.B. Joshi, V.K. Jayaraman, B.D. Kulkarni, Development of unified correlations for volumetric mass-transfer coefficient and effective interfacial area in bubble column reactors for various gas-liquid systems using support vector regression, Ind. Eng. Chem. Res. 48(9)(2009)4216-4236. [43] A.B. Gandhi, J.B. Joshi, Estimation of heat transfer coefficient in bubble column reactors using support vector regression, Chem. Eng. J. 160(1)(2010)302-310. [44] K. Sivaramakrishnan, J.J. Nie, A. de Klerk, V. Prasad, Least squares-support vector regression for determining product concentrations in acid-catalyzed propylene oligomerization, Ind. Eng. Chem. Res. 57(39)(2018)13156-13176. [45] S. Zaidi, Development of support vector regression (SVR)-based model for prediction of circulation rate in a vertical tube thermosiphon reboiler, Chem. Eng. Sci. 69(1)(2012)514-521. [46] M. Izadi, M. Rahimi, R. Beigzadeh, Evaluation of micromixing in helically coiled microreactors using artificial intelligence approaches, Chem. Eng. J. 356(2019)570-579. [47] K. Korkerd, C Soanuch, D. Gidaspow, P. Piumsomboon, B. Chalermsinsuwan, Artificial neural network model for predicting minimum fluidization velocity and maximum pressure drop of gas fluidized bed with different particle size distributions, S. Afr. J. Chem. Eng. 37(2021)61-73. [48] N. Bar, M.N. Biswas, S.K. Das, Prediction of pressure drop using artificial neural network for gas non-Newtonian liquid flow through piping components, Ind. Eng. Chem. Res. 49(19)(2010)9423-9429. [49] S.K. Jana, A.B. Biswas, S.K. Das, Pressure drop in tapered bubble columns using non-Newtonian pseudoplastic liquid-Experimental and ANN prediction, Can. J. Chem. Eng. 92(3)(2014)578-584. [50] H. Sharma, G. Das, A.N. Samanta, ANN-based prediction of two-phase gas-liquid flow patterns in a circular conduit, AIChE. J. 52(9)(2006)3018-3028. [51] A. Dasari, A.B. Desamala, A.K. Dasmahapatra, T.K. Mandal, Experimental studies and probabilistic neural network prediction on flow pattern of viscous oil-water flow through a circular horizontal pipe, Ind. Eng. Chem. Res. 52(23)(2013)7975-7985. [52] J. Brockkotter, M. Cielanga, B. Weber, A. Jupke, Prediction and characterization of flooding in pulsed sieve plate extraction columns using data-driven models, Ind. Eng. Chem. Res. 59(44)(2020)19726-19735. [53] H.B. Zhong, Z.N. Sun, J. Zhu, C. Zhang, Prediction of solid holdup in a gas-solid circulating fluidized bed riser by artificial neural networks, Ind. Eng. Chem. Res. 60(8)(2021)3452-3462. [54] L. Xie, G.M. Zhou, D.D. Wang, H.F. Wang, C.W. Jiang, Machine learning and data-driven modeling to discover the bed expansion ratio correlation for gas-liquid-solid three-phase flows, Ind. Eng. Chem. Res. 62(1)(2023)789-800. [55] L.Q. Lu, X. Gao, J.F. Dietiker, M. Shahnam, W.A. Rogers, Development of a filtered CFD-DEM drag model with multiscale markers using an artificial neural network and nonlinear regression, Ind. Eng. Chem. Res. 61(1)(2022)882-893. [56] C.Z. Du, C.X. Han, Z. Yang, H. Wu, H. Luo, L. Niedzwiecki, B.N. Lu, W. Wang, Multiscale CFD simulation of an industrial diameter-transformed fluidized bed reactor with artificial neural network analysis of EMMS drag markers, Ind. Eng. Chem. Res. 61(24)(2022)8566-8580. [57] L.T. Zhu, X.Z. Chen, B. Ouyang, W.C. Yan, H. Lei, Z. Chen, Z.H. Luo, Review of machine learning for hydrodynamics, transport, and reactions in multiphase flows and reactors, Ind. Eng. Chem. Res. 61(28)(2022)9901-9949. [58] S.S. Joshi, V.H. Dalvi, V.S. Vitankar, A.J. Joshi, J.B. Joshi, Novel correlation for critical speed for solid suspension in stirred tanks developed using machine learning models trained on literature data, Ind. Eng. Chem. Res. 62(22)(2023)8954-8971. [59] S.R. Hazare, S.V. Vala, C.S. Patil, A.J. Joshi, J.B. Joshi, V.S. Vitankar, A.W. Patwardhan, Correlating interfacial area and volumetric mass transfer coefficient in bubble column with the help of machine learning methods, Ind. Eng. Chem. Res. 62(5)(2023)2104-2123. [60] S. Saraswathi K, H. Bhosale, P. Ovhal, N. Parlikkad Rajan, J.K. Valadi, Random forest and autoencoder data-driven models for prediction of dispersed-phase holdup and drop size in rotating disc contactors, Ind. Eng. Chem. Res. 60(1)(2021)425-435. [61] Z.N. Su, Y. Wang, B.R. Tan, Q.Z. Cheng, X.F. Duan, D.B. Xu, L.L. Tian, T. Qi, Performance prediction of disc and doughnut extraction columns using Bayes optimization algorithm-based machine learning models, Chem. Eng. Process. Process. Intensif. 183(2023)109248. [62] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521(7553)(2015)436-444. [63] R.E. Fan, P.H. Chen, C.J. Lin, Working set selection using second order information for training support vector machines, J Mach Learn. Res 6(2005)1889-1918. [64] M. Arabloo, H. Ziaee, M. Lee, A. Bahadori, Prediction of the properties of brines using least squares support vector machine (LS-SVM) computational strategy, J. Taiwan Inst. Chem. Eng. 50(2015)123-130. [65] L.T. Zhu, J.X. Tang, Z.H. Luo, Machine learning to assist filtered two-fluid model development for dense gas-particle flows, AlChE. J. 66(6)(2020) e16973. [66] H. Zhou, J.J. Yang, S. Jing, W.J. Lan, Q.A. Zheng, S.W. Li, Influence of dispersed-phase viscosity on droplet breakup in a continuous pump-mixer, Ind. Eng. Chem. Res. 58(51)(2019)23458-23467. [67] A. Kumar, S. Hartland, Unified correlations for the prediction of drop size in liquid-liquid extraction columns, Ind. Eng. Chem. Res. 35(8)(1996)2682-2695. [68] A. Kumar, S. Hartland, A unified correlation for the prediction of dispersed-phase hold-up in liquid-liquid extraction columns, Ind. Eng. Chem. Res. 34(11)(1995)3925-3940. |