[1] R.B. Barta, E.A. Groll, D. Ziviani, Review of stationary and transport CO2 refrigeration and air conditioning technologies, Appl. Therm. Eng. 185 (2021) 116422. [2] J.A. Expósito-Carrillo, F.L. Flor, B. Perís-Pérez, J.M. Salmerón-Lissén, Thermodynamic analysis of the optimal operating conditions for a two-stage CO2 refrigeration unit in warm climates with and without ejector, Appl. Therm. Eng. 185 (2021) 116284. [3] Y.J. He, J.H. Cheng, M.M. Chang, C.L. Zhang, Modified transcritical CO2 heat pump system with new water flow configuration for residential space heating, Energy Convers. Manag. 230 (2021) 113791. [4] B. Peris Pérez, J.A. Expósito Carrillo, F.J. Sánchez de La Flor, J.M. Salmerón Lissén, A. Morillo Navarro, Thermoeconomic analysis of CO2 ejector-expansion refrigeration cycle (EERC) for low-temperature refrigeration in warm climates, Appl. Therm. Eng. 188 (2021) 116613. [5] K. Mohammadi, J.G. McGowan, A thermo-economic analysis of a combined cooling system for air conditioning and low to medium temperature refrigeration, J. Clean. Prod. 206 (2019) 580–597. [6] H.R. Abbasi, A. Yavarinasab, S. Roohbakhsh, Waste heat management of direct carbon fuel cell with advanced supercritical carbon dioxide power cycle–A thermodynamic-electrochemical modeling approach, J. CO2 Util. 51 (2021) 101630. [7] D. Tsimpoukis, E. Syngounas, D. Petsanas, G. Mitsopoulos, S. Anagnostatos, E. Bellos, C. Tzivanidis, M.G. Vrachopoulos, Energy and environmental investigation of R744 all-in-one configurations for refrigeration and heating/air conditioning needs of a supermarket, J. Clean. Prod. 279 (2021) 123234. [8] S.M. Opalic, M. Goodwin, L. Jiao, H.K. Nielsen, Á.A. Pardiñas, A. Hafner, M. Kolhe, ANN modelling of CO2 refrigerant cooling system COP in a smart warehouse, J. Clean. Prod. 260 (2020) 120887. [9] J.J. Xue, X.H. Nie, Z.Y. Du, H.R. Li, L. Zhao, Y. Zhu, J.J. Wang, Molecular dynamics investigation on isobaric heat capacity of working fluid in supercritical CO2 Brayton cycle: Effect of trace gas, J. CO2 Util. 55 (2022) 101790. [10] P. Arora, R.R. Chance, H. Hendrix, M. Realff, V. Thomas, Y.H. Yuan, Life cycle greenhouse gas emissions of different CO2 supply options for an algal biorefinery, J. CO2 Util. 40 (2020) 101213. [11] O. Emrah, T. Mustafa, Saturated flow boiling heat transfer correlation for carbon dioxide for horizontal smooth tubes, Heat Mass Transf. 53 (6) (2017) 2165–2185. [12] C. Sahana, S. De, S. Mondal, Integration of CO2 power and refrigeration cycles with a desalination unit to recover geothermal heat in an oilfield, Appl. Therm. Eng. 189 (2021) 116744. [13] Z.L. Sun, J.M. Li, Y.C. Liang, H. Sun, S.C. Liu, L.J. Yang, C.Y. Wang, B. Dai, Performance assessment of CO2 supermarket refrigeration system in different climate zones of China, Energy Convers. Manag. 208 (2020) 112572. [14] X.L. Huai, S. Koyama, An experimental study of carbon dioxide condensation in mini channels, J. Therm. Sci. 13 (4) (2004) 358–365. [15] S.C. Liu, H.F. Qi, V. Nian, B. Liu, B. Dai, Z.L. Sun, X.Q. Li, J. Yuan, A new correlation for carbon dioxide boiling heat transfer coefficient outside evaporating tubes, J. Clean. Prod. 276 (2020) 123050. [16] A. Chitsaz, S. Khalilarya, P. Mojaver, Supercritical CO2 utilization in a CO2 zero emission novel system for bio-synthetic natural gas, power and freshwater productions, J. CO2 Util. 59 (2022) 101947. [17] E. Bellos, C. Tzivanidis, A comparative study of CO2 refrigeration systems, Energy Convers. Manag. X. 1 (2019) 100002. [18] I. Snustad, Å. Ervik, A. Austegard, A. Brunsvold, J.Y. He, Z.L. Zhang, Heat transfer characteristics of CO2 condensation on common heat exchanger materials: Method development and experimental results, Exp. Therm. Fluid Sci. 129 (2021) 110440. [19] J. Heo, R. Yun, Prediction of CO2 condensation heat transfer coefficient in a tube, Int. J. Therm. Sci. 89 (2015) 254–263. [20] M.A. Moradkhani, S.H. Hosseini, M. Mansouri, H. Omidian Zad, M. Karami, G. Ahmadi, New general models for condensation heat transfer coefficient of carbon dioxide in smooth tubes by intelligent and least square fitting approaches, J. Clean. Prod. 330 (2022) 129762. [21] A.S. Pamitran, K. Il Choi, J.T. Oh, H.K. Oh, Two-phase pressure drop during CO2 vaporization in horizontal smooth minichannels, Int. J. Refrig. 31 (2008) 1375–1383. [22] M.M. Shah, Prediction of heat transfer during condensation of carbon dioxide in channels, Appl. Therm. Eng. 93 (2016) 192–199. [23] J. Heo, H. Park, R. Yun, Comparison of condensation heat transfer and pressure drop of CO2 in rectangular microchannels, Int. J. Heat Mass Transf. 65 (2013) 719–726. [24] R. Mastrullo, A.W. Mauro, A. Rosato, G.P. Vanoli, Carbon dioxide heat transfer coefficients and pressure drops during flow boiling: Assessment of predictive methods, Int. J. Refrig. 33 (6) (2010) 1068–1085. [25] C.Y. Park, P. Hrnjak, CO2 flow condensation heat transfer and pressure drop in multi-port microchannels at low temperatures, Int. J. Refrig. 32 (6) (2009) 1129–1139. [26] M. Ducoulombier, Convective carbon dioxide emulsion–Experimental study in micro-channel, Ph.D. Thesis (2010). [27] P. Kang, J. Heo, R. Yun, Condensation heat transfer characteristics of CO2 in a horizontal smooth tube, Int. J. Refrig. 36 (3) (2013) 1090–1097. [28] D.C. Adams, P. Hrnjak, T. Newell, Pressure drop and void fraction in microchannels using carbon dioxide, ammonia, and R245fa as refrigerants, ACRC Technical Report 221, University of Illinois at Urbana-Champaig, USA, 2003. [29] J.M. Cho, M.S. Kim, Experimental studies on the evaporative heat transfer and pressure drop of CO2 in smooth and micro-fin tubes of the diameters of 5 and 9.52 mm, Int. J. Refrig. 30 (6) (2007) 986–994. [30] C.Y. Park, P.S. Hrnjak, CO2 and R410A flow boiling heat transfer, pressure drop, and flow pattern at low temperatures in a horizontal smooth tube, Int. J. Refrig. 30 (1) (2007) 166–178. [31] J. Heo, H. Park, R. Yun, Condensation heat transfer and pressure drop characteristics of CO2 in a microchannel, Int. J. Refrig. 36 (6) (2013) 1657–1668. [32] B.M. Fronk, S. Garimella, Condensation of carbon dioxide in microchannels, Int. J. Heat Mass Transf. 100 (2016) 150–164. [33] L. Zhang, L.L. Jiang, J.H. Liu, Y.X. Yuan, J.W. Zhang, Research on pressure drop characteristics of CO2 flow boiling based on flow pattern in horizontal Minichannel, Heat Mass Transf. 56 (10) (2020) 2939–2952. [34] J. Wu, T. Koettig, C. Franke, D. Helmer, T. Eisel, F. Haug, J. Bremer, Investigation of heat transfer and pressure drop of CO2 two-phase flow in a horizontal minichannel, Int. J. Heat Mass Transf. 54 (9–10) (2011) 2154–2162. [35] D. Chisholm, A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow, Int. J. Heat Mass Transf. 10 (12) (1967) 1767–1778. [36] M.A. Moradkhani, S.H. Hosseini, K. Ranjbar, Universal intelligent models for liquid density of CO2 +hydrocarbon mixtures, Fuel 334 (2023) 126642. [37] M.A. Moradkhani, S.H. Hosseini, K. Ranjbar, M. Moradi, Intelligent modeling of hydrogen sulfide solubility in various types of single and multicomponent solvents, Sci. Rep. 13 (1) (2023) 3777. [38] M. Moradi, M.A. Moradkhani, S.H. Hosseini, M. Olazar, Intelligent modeling of photocatalytically reactive yellow 84 azo dye removal from aqueous solutions by ZnO-light expanded clay aggregate nanoparticles, Int. J. Environ. Sci. Technol. 20 (3) (2023) 3009–3022. [39] M.A. Moradkhani, S.H. Hosseini, S.W. Lei, M.J. Song, Intelligent computing approaches to forecast thickness and surface roughness of frost layer on horizontal plates under natural convection, Appl. Therm. Eng. 217 (2022) 119258. [40] E. Alipanahi, M.A. Moradkhani, A. Zolfaghari, B. Bayati, Robust intelligent approaches to predict the CO2 frosting temperature in natural gas mixtures under cryogenic conditions, Int. J. Refrig. (2022), https://doi.org/10.1016/j.ijrefrig.2022.11.018. [41] M.A. Moradkhani, S.H. Hosseini, M. Karami, Forecasting of saturated boiling heat transfer inside smooth helically coiled tubes using conventional and machine learning techniques, Int. J. Refrig. 143 (2022) 78–93. [42] S. Hosseini, M. Rezaei, M. Bag-Mohammadi, M. Karami, M. Moradkhani, M. Panahi, M. Olazar, Estimation of the minimum spouting velocity in shallow spouted beds by intelligent approaches: Study of fine and coarse particles, Powder Technol. 354 (2019) 456–465. [43] M.A. Moradkhani, T. Kikhavani, S.H. Hosseini, B. Van Der Bruggen, B. Bayati, Applying intelligent approaches to estimate the removal efficiency of heat stable salts from lean amine via electrodialysis, Int. J. Greenh. Gas Control 113 (2022) 103548. [44] S.H. Hosseini, M.A. Moradkhani, M. Valizadeh, A. Zendehboudi, M. Olazar, A general heat transfer correlation for flow condensation in single port mini and macro channels using genetic programming, Int. J. Refrig. 119 (2020) 376–389. [45] S.H. Hosseini, M.A. Moradkhani, M.M. Shah, M. Edalati, General equation for flow condensation heat transfer coefficient in different orientations of helical coils of smooth tubes using genetic programming, Int. Commun. Heat Mass Transf. 119 (2020) 104916. [46] S.H. Hosseini, M.A. Moradkhani, M. Valizadeh, G. Ahmadi, Applying genetic programming in estimation of frost layer thickness on horizontal and vertical plates at ultra-low temperature, Int. J. Refrig. 125 (2021) 113–121. [47] M.A. Moradkhani, S.H. Hosseini, M. Olazar, H. Altzibar, M. Valizadeh, Estimation of the minimum spouting velocity and pressure drop in open-sided draft tube spouted beds using genetic programming, Powder Technol. 387 (2021) 363–372. [48] L. Friedel, Improved friction pressure drop correlation for horizontal and vertical two-phase pipe flow, In: Proceedings of the European Two-Phase Flow Meeting, Ispra,1979. [49] H. Müller-Steinhagen, K. Heck, A simple friction pressure drop correlation for two-phase flow in pipes, Chem. Eng. Process. Process. Intensif. 20 (6) (1986) 297–308. [50] S. Koyama, K. Kuwahara, K. Nakashita, K. Yamamoto, An experimental study on condensation of refrigerant R134a in a multi-port extruded tube, Int. J. Refrig. 26 (4) (2003) 425–432. [51] M.A. Hossain, H.M.M. Afroz, A. Miyara, Two-phase frictional multiplier correlation for the prediction of condensation pressure drop inside smooth horizontal tube, Procedia Eng. 105 (2015) 64–72. [52] L.C. Sun, K. Mishima, Evaluation analysis of prediction methods for two-phase flow pressure drop in mini-channels, Int. J. Multiph. Flow 35 (1) (2009) 47–54. [53] W. Zhang, T. Hibiki, K. Mishima, Correlations of two-phase frictional pressure drop and void fraction in mini-channel, Int. J. Heat Mass Transf. 53 (1–3) (2010) 453–465. [54] S.M. Kim, I. Mudawar, Universal approach to predicting two-phase frictional pressure drop for adiabatic and condensing mini/micro-channel flows, Int. J. Heat Mass Transf. 55 (11–12) (2012) 3246–3261. [55] D. Jige, N. Inoue, S. Koyama, Condensation of refrigerants in a multiport tube with rectangular minichannels, Int. J. Refrig. 67 (2016) 202–213. [56] X. Gu, J. Wen, C.L. Wang, X. Zhang, S.M. Wang, J.Y. Tu, Condensation flow patterns and model assessment for R1234ze(E) in horizontal mini/macro-channels, Int. J. Therm. Sci. 134 (2018) 140–159. [57] M.A. Moradkhani, S.H. Hosseini, M. Valizadeh, A. Zendehboudi, G. Ahmadi, A general correlation for the frictional pressure drop during condensation in mini/micro and macro channels, Int. J. Heat Mass Transf. 163 (2020) 120475. [58] R.W. Lockhart, R.C. Martinelli, Proposed correlation of data for isothermal two-phase, two-component flow in pipes, Chem. Eng. Prog. 45 (1949) 39–48. [59] S.D. Bolboaca, L. Jäntschi, Pearson versus Spearman, Kendall’s tau correlation analysis on structure-activity relationships of biologic active compounds, Leonardo J. Sci. 5 (2006) 179–200. [60] M.A. Moradkhani, S.H. Hosseini, M. Valizadeh, M.J. Song, Machine learning based models to predict frost characteristics on cryogenic surfaces under forced convection conditions, Int. Commun. Heat Mass Transf. 129 (2021) 105667. [61] P. Cheng, H.Y. Wu, Mesoscale and microscale phase-change heat transfer, Adv. Heat Transf. 39 (2006) 461–563. [62] J.M. Li, B.X.Wang, Size effect on two-phase regime for condensation in micro/mini tubes, Heat Trans. Asian Res. 32 (1) (2003) 65–71. [63] M.A. Moradkhani, S.H. Hosseini, P. Morshedi, M. Rahimi, M.J. Song, Saturated flow boiling inside conventional and mini/micro channels: A new general model for frictional pressure drop using genetic programming, Int. J. Refrig. 132 (2021) 197–212. [64] F. Faress, A. Yari, F. Rajabi Kouchi, A. Safari Nezhad, A. Hadizadeh, L. Sharif Bakhtiar, Y. Naserzadeh, N. Mahmoudi, Developing an accurate empirical correlation for predicting anti-cancer drugs' dissolution in supercritical carbon dioxide, Sci. Rep. 12 (1) (2022) 9380. [65] M.A. Moradkhani, S.H. Hosseini, M. Karami, M. Olazar, J.F. Saldarriaga, Applying conventional and intelligent approaches to model the minimum spouting velocity of vegetable biomasses in conical spouted beds, Powder Technol. 418 (2023) 118300. [66] S.H. Hosseini, M.A. Moradkhani, M. Rasteh, M.Rahimi, New smart models for minimum fluidization velocity forecasting in the tapered fluidized beds based on particle size distribution, Ind. Eng. Chem. Res. 60 (42) (2021) 15289–15300. [67] S.G. Kandlikar, Fundamental issues related to flow boiling in minichannels and microchannels, Exp. Therm. Fluid Sci. 26 (2–4) (2002) 389–407. [68] S.G. Kandlikar, P. Balasubramanian, An extension of the flow boiling correlation to transition, laminar, and deep laminar flows in minichannels and microchannels, Heat Transf. Eng. 25 (3) (2004) 86–93. [69] S.H. Hosseini, M.A. Ayari, A. Khandakar, M.A. Moradkhani, M. Jowkar, M. Panahi, G. Ahmadi, J.Tavoosi, Robust and general model to forecast the heat transfer coefficient for flow condensation in multi port mini/micro-channels, Processes 10 (2) (2022) 243. [70] S.M. Kim, J. Kim, I.Mudawar, Flow condensation in parallel micro-channels - Part 1: Experimental results and assessment of pressure drop correlations, Int. J. Heat Mass Transf. 55 (4) (2012) 971–983. [71] M.A. Moradkhani, S.H. Hosseini, M.J. Song, Robust and general predictive models for condensation heat transfer inside conventional and mini/micro channel heat exchangers, Appl. Therm. Eng. 201 (2022) 117737. [72] M.A. Moradkhani, S.H. Hosseini, M. Mansouri, G. Ahmadi, M.J. Song, Robust and universal predictive models for frictional pressure drop during two-phase flow in smooth helically coiled tube heat exchangers, Sci. Rep. 11 (1) (2021) 20068. [73] X.Y. Chen, Y. Hou, S.T. Chen, X.F. Liu, X. Zhong, Characteristics of frictional pressure drop of two-phase nitrogen flow in horizontal smooth mini channels in diabatic/adiabatic conditions, Appl. Therm. Eng. 162 (2019) 114312. |