[1] T. Thorsen, S.J. Maerkl, S.R. Quake, Microfluidic large-scale integration, Science 298(5593)(2002)580-584. [2] Y. Cao, J. Li, Y. Jin, J.H. Luo, Y.B. Wang, Liquid-liquid two-phase mass transfer characteristics in a rotating helical microchannel, Chin. J. Chem. Eng. 27(12)(2019)2937-2947. [3] H.L. Yi, Y.C. Wan, Y. Zhang, Y.J. Wang, W.Y. Fei, G.S. Luo, Controllable preparation of highly uniform γ-alumina microspheres via the sol-gel route for alkoxide in a coaxial microchannel, J. Sol Gel Sci. Technol. 93(2)(2020)391-401. [4] X.H. Ge, H. Zhao, T. Wang, J. Chen, J.H. Xu, G.S. Luo, Microfluidic technology for multiphase emulsions morphology adjustment and functional materials preparation, Chin. J. Chem. Eng. 24(6)(2016)677-692. [5] S. Mashaghi, A. Abbaspourrad, D.A. Weitz, A.M. van Oijen, Droplet microfluidics:A tool for biology, chemistry and nanotechnology, Trac Trends Anal. Chem. 82(2016)118-125. [6] T.S. Kaminski, O. Scheler, P. Garstecki, Droplet microfluidics for microbiology:Techniques, applications and challenges, Lab Chip 16(12)(2016)2168-2187. [7] G. Dockx, S. Geisel, D.G. Moore, E. Koos, A.R. Studart, J. Vermant, Designer liquid-liquid interfaces made from transient double emulsions, Nat. Commun. 9(1)(2018)4763. [8] A.R. Abate, D.A. Weitz, Faster multiple emulsification with drop splitting, Lab Chip 11(11)(2011)1911-1915. [9] S. Matosevic, B.M. Paegel, Stepwise synthesis of giant unilamellar vesicles on a microfluidic assembly line, J. Am. Chem. Soc. 133(9)(2011)2798-2800. [10] N.N. Deng, W. Wang, X.J. Ju, R. Xie, L.Y. Chu, Spontaneous transfer of droplets across microfluidic laminar interfaces, Lab Chip 16(22)(2016)4326-4332. [11] A. Sinha, A.K. Mollah, S. Hardt, R. Ganguly, Particle dynamics and separation at liquid-liquid interfaces, Soft Matter 9(22)(2013)5438-5447. [12] J. Eggers, J.R. Lister, H.A. Stone, Coalescence of liquid drops, J. Fluid Mech. 401(1999)293-310. [13] M. Foda, R.G. Cox, The spreading of thin liquid films on a water-air interface, J. Fluid Mech. 101(1)(1980)33-51. [14] R.V. Craster, O.K. Matar, On the dynamics of liquid lenses, J. Colloid Interface Sci. 303(2)(2006)503-516. [15] L.Q. Chen, E. Bonaccurso, M.E.R. Shanahan, Inertial to viscoelastic transition in early drop spreading on soft surfaces, Langmuir 29(6)(2013)1893-1898. [16] S.H. Ching, N. Bansal, B. Bhandari, Alginate gel particles-A review of production techniques and physical properties, Crit. Rev. Food Sci. Nutr. 57(6)(2017)1133-1152. [17] P. Aslani, R.A. Kennedy, Effect of gelation conditions and dissolution media on the release of paracetamol from alginate gel beads, J. Microencapsul. 13(5)(1996)601-614. [18] Z. Chen, T. Wang, Q. Yan, Building a polysaccharide hydrogel capsule delivery system for control release of ibuprofen, J. Biomater. Sci. Polym. Ed. 29(3)(2018)309-324. [19] S. Utech, R. Prodanovic, A.S. Mao, R. Ostafe, D.J. Mooney, D.A. Weitz, Microfluidic generation of monodisperse, structurally homogeneous alginate microgels for cell encapsulation and 3D cell culture, Adv. Healthc. Mater. 4(11)(2015)1628-1633. [20] L.Y. Chen, R.Z. Shen, S. Komasa, Y.X. Xue, B.Y. Jin, Y.P. Hou, J. Okazaki, J. Gao, Drug-loadable calcium alginate hydrogel system for use in oral bone tissue repair, Int. J. Mol. Sci. 18(5)(2017)989. [21] S.S. Tie, W.T. Su, X.D. Zhang, Y.N. Chen, X. Zhao, M.Q. Tan, pH-responsive core-shell microparticles prepared by a microfluidic chip for the encapsulation and controlled release of procyanidins, J. Agric. Food Chem. 69(5)(2021)1466-1477. [22] K.I. Draget, M.K. Simensen, E. Onsoeyen, O. Smidsroed, Gel strength of Ca-limited alginate gels made in situ, Hydrobiologia 260-261(1)(1993)563-565. [23] S. Adams, W.J. Frith, J.R. Stokes, Influence of particle modulus on the rheological properties of agar microgel suspensions, J. Rheol. 48(6)(2004)1195-1213. [24] G.A. Foster, D.M. Headen, C. González-García, M. Sálmerón-Sanchez, H. Shirwan, A.J. Garcia, Protease-degradable microgels for protein delivery for vascularization, Biomaterials 113(2017)170-175. [25] W.H. Tan, S. Takeuchi, Monodisperse alginate hydrogel microbeads for cell encapsulation, Adv. Mater. 19(18)(2007)2696-2701. [26] Y.Z. Liu, N. Tottori, T. Nisisako, Microfluidic synthesis of highly spherical calcium alginate hydrogels based on external gelation using an emulsion reactant, Sens. Actuat. B 283(2019)802-809. [27] H. Shieh, M. Saadatmand, M. Eskandari, D. Bastani, Microfluidic on-chip production of microgels using combined geometries, Sci. Rep. 11(1)(2021)1565. [28] L. Mazutis, R. Vasiliauskas, D.A. Weitz, Microfluidic production of alginate hydrogel particles for antibody encapsulation and release, Macromol. Biosci. 15(12)(2015)1641-1646. [29] Y.L. Wang, J.J. Hu, Sub-100-micron calcium-alginate microspheres:Preparation by nitrogen flow focusing, dependence of spherical shape on gas streams and a drug carrier using acetaminophen as a model drug, Carbohydr. Polym. 269(2021)118262. [30] A. Dalili, E. Samiei, M. Hoorfar, A review of sorting, separation and isolation of cells and microbeads for biomedical applications:Microfluidic approaches, Analyst 144(1)(2018)87-113. [31] E.Y. Kenig, Y.H. Su, A. Lautenschleger, P. Chasanis, M. Grünewald, Micro-separation of fluid systems:A state-of-the-art review, Sep. Purif. Technol. 120(2013)245-264. [32] A. Aota, K. Mawatari, S. Takahashi, T. Matsumoto, K. Kanda, R. Anraku, A. Hibara, M. Tokeshi, T. Kitamori, Phase separation of gas-liquid and liquid-liquid microflows in microchips, Microchim. Acta 164(3)(2009)249-255. [33] T. Dong, F. Wang, W.H. Weheliye, P. Angeli, Surfing of drops on moving liquid-liquid interfaces, J. Fluid Mech. 892(2020) A36. [34] H.Z. Yi, T.T. Fu, C.Y. Zhu, Y.G. Ma, Effects of hydrodynamics on the droplet adsorption at the interface of parallel flow in a microchannel, Chem. Eng. Sci. 269(2023)118504. [35] J. Hegemann, H.H. Boltz, J. Kierfeld, Elastic capsules at liquid-liquid interfaces, Soft Matter 14(27)(2018)5665-5685. [36] S. Torza, S.G. Mason, Coalescence of two immiscible liquid drops, Science 163(3869)(1969)813-814. [37] B. Gol, F.J. Tovar-Lopez, M.E. Kurdzinski, S.Y. Tang, P. Petersen, A. Mitchell, K. Khoshmanesh, Continuous transfer of liquid metal droplets across a fluid-fluid interface within an integrated microfluidic chip, Lab Chip 15(11)(2015)2476-2485. [38] K.S. Jayaprakash, U. Banerjee, A.K. Sen, Dynamics of aqueous droplets at the interface of coflowing immiscible oils in a microchannel, Langmuir 32(8)(2016)2136-2143. [39] E.E. Ramirez-Miquet, J. Perchoux, K. Loubiere, C. Tronche, L. Prat, O. Sotolongo-Costa, Optical feedback interferometry for velocity measurement of parallel liquid-liquid flows in a microchannel, Sensors 16(8)(2016)1233. [40] A. Pohar, M. Lakner, I. Plazl, Parallel flow of immiscible liquids in a microreactor:Modeling and experimental study, Microfluid. Nanofluid. 12(1)(2012)307-316. [41] S. Hazra, S. Mitra, A.K. Sen, Migration and spreading of droplets across a fluid-fluid interface in microfluidic coflow, Langmuir 38(31)(2022)9660-9668. [42] S. Mitra, S.K. Mitra, Understanding the early regime of drop spreading, Langmuir 32(35)(2016)8843-8848. [43] L.H. Tanner, The spreading of silicone oil drops on horizontal surfaces, J. Phys. D:Appl. Phys. 12(9)(1979)1473-1484. [44] Y.D. Hu, Q. Wang, J.Y. Wang, J.T. Zhu, H. Wang, Y.J. Yang, Shape controllable microgel particles prepared by microfluidic combining external ionic crosslinking, Biomicrofluidics 6(2)(2012)26502-265029. [45] Y.S. Lin, C.H. Yang, Y.Y. Hsu, C.L. Hsieh, Microfluidic synthesis of tail-shaped alginate microparticles using slow sedimentation, Electrophoresis 34(3)(2013)425-431. [46] C.T. Avedisian, R.P. Andres, Bubble nucleation in superheated liquid-liquid emulsions, J. Colloid Interface Sci. 64(3)(1978)438-453. |