[1] X.L. Pan, F.S. Dong, X.H. Wu, J. Xu, X.G. Liu, Y.Q. Zheng, Progress of the discovery, application, and control technologies of chemical pesticides in China, J. Integr. Agric. 18(4)(2019)840-853. [2] C.D. Osteen, J. Fernandez-Cornejo, Economic and policy issues of U.S. agricultural pesticide use trends, Pest Manag. Sci. 69(9)(2013)1001-1025. [3] F.H.M. Tang, M. Lenzen, A. McBratney, F. Maggi, Risk of pesticide pollution at the global scale, Nat. Geosci. 14(4)(2021)206-210. [4] A.R.C. Braga, V.V. de Rosso, C.A.Y. Harayashiki, P.C. Jimenez, I.B. Castro, Global health risks from pesticide use in Brazil, Nat. Food 1(6)(2020)312-314. [5] N. De Cock, M. Massinon, S.O.T. Salah, F. Lebeau, Investigation on optimal spray properties for ground based agricultural applications using deposition and retention models, Biosyst. Eng. 162(2017)99-111. [6] X. Zhao, H.X. Cui, Y. Wang, C.J. Sun, B. Cui, Z.H. Zeng, Development strategies and prospects of nano-based smart pesticide formulation, J. Agric. Food Chem. 66(26)(2018)6504-6512. [7] C. Cao, Z.L. Zhou, L.D. Cao, L. Zheng, J. Xu, F.M. Li, Q.L. Huang, Influence of the surface limiting elasticity modulus on the impact behavior of droplets of difenoconazole-loaded mesoporous silica nanoparticles with associated SDS, Soft Matter 14(29)(2018)6070-6075. [8] ISO 22866:2005, Equipment for crop protection-Methods for field measurement of spray drift, 2005. [9] C.L. Wang, A. Herbst, A.J. Zeng, S. Wongsuk, B.Y. Qiao, P. Qi, J. Bonds, V. Overbeck, Y. Yang, W.L. Gao, X.K. He, Assessment of spray deposition, drift and mass balance from unmanned aerial vehicle sprayer using an artificial vineyard, Sci. Total Environ. 777(2021)146181. [10] J.C. Ferguson, C.C. O'Donnell, B.S. Chauhan, S.W. Adkins, G.R. Kruger, R.B. Wang, P.H. Urach Ferreira, A.J. Hewitt, Determining the uniformity and consistency of droplet size across spray drift reducing nozzles in a wind tunnel, Crop Prot. 76(2015)1-6. [11] S.W. Hong, J. Park, H. Jeong, S. Lee, L. Choi, L.Y. Zhao, H.P. Zhu, Fluid dynamic approaches for prediction of spray drift from ground pesticide applications:A review, Agronomy 11(6)(2021)1182. [12] M. Al Heidary, J.P. Douzals, C. Sinfort, A. Vallet, Influence of spray characteristics on potential spray drift of field crop sprayers:A literature review, Crop Prot. 63(2014)120-130. [13] D. Nuyttens, I.K.A. Zwertvaegher, D. Dekeyser, Spray drift assessment of different application techniques using a drift test bench and comparison with other assessment methods, Biosyst. Eng. 154(2017)14-24. [14] M. Taylor, S.M. Lyons, C.L. Davie-Martin, T.S. Geoghegan, K.J. Hageman, Understanding trends in pesticide volatilization from agricultural fields using the pesticide loss via volatilization model, Environ. Sci. Technol. 54(4)(2020)2202-2209. [15] Z.C. Wang, L.C. Lan, X.K. He, A. Herbst, Dynamic evaporation of droplet with adjuvants under different environment conditions, Int. J. Agric. Biol. Eng. 13(2)(2020)1-6. [16] S.D. Xue, J.K. Han, X. Xi, J.Y. Zhao, Z. Lan, R.F. Wen, X.H. Ma, Rapid velocity reduction and drift potential assessment of off-nozzle pesticide droplets, Chin. J. Chem. Eng. 46(2022)243-254. [17] S.D. Xue, X. Xi, Z. Lan, R.F. Wen, X.H. Ma, Longitudinal drift behaviors and spatial transport efficiency for spraying pesticide droplets, Int. J. Heat Mass Transf. 177(2021)121516. [18] M. Massinon, N. De Cock, S.O.T. Salah, F. Lebeau, Reduced span spray-Part 1:Retention, Asp. Appl. Biol. 132(2016)1-8. [19] S.H. Yu, Y.T. Yun, Y. Choi, R.A. Dafsari, J. Lee, Effect of injection angle on drift potential reduction in pesticide injection nozzle spray applied in domestic agricultural drones, J. Biosyst. Eng. 46(2)(2021)129-138. [20] H.B. Chen, B. K Fritz, Y.B. Lan, Z.Y. Zhou, J.F. Zheng, Overview of spray nozzles for plant protection from manned aircrafts:Present research and prospective, Int. J. Precis. Agric. Aviat. 1(1)(2018)1-12. [21] Q. Liu, C.F. Shan, H.Y. Zhang, C.C. Song, Y.B. Lan, Evaluation of liquid atomization and spray drift reduction of hydraulic nozzles with four spray adjuvant solutions, Agriculture 13(2)(2023)236. [22] E. Hilz, A.W.P. Vermeer, Spray drift review:The extent to which a formulation can contribute to spray drift reduction, Crop Prot. 44(2013)75-83. [23] R. Sijs, S. Kooij, D. Bonn, How surfactants influence the drop size in sprays from flat fan and hollow cone nozzles, Phys. Fluids 33(11)(2021)113608. [24] P. Spanoghe, M. De Schampheleire, P. Van der Meeren, W. Steurbaut, Influence of agricultural adjuvants on droplet spectra, Pest. Manag. Sci. 63(1)(2007)4-16. [25] W.T. Yang, W.D. Jia, M.X. Ou, W. Zhong, L. Jiang, X.W. Wang, Effect of physical properties of an emulsion pesticide on the atomisation process and the spatial distribution of droplet size, Agriculture 12(7)(2022)949. [26] X.G. Zhang, L.X. Xiong, Effect of adjuvants on the spray droplet size of pesticide dilute emulsion, Colloids Surf. A 619(2021)126557. [27] S. Kooij, R. Sijs, M.M. Denn, E. Villermaux, D. Bonn, What determines the drop size in sprays?Phys. Rev. X 8(3)(2018)031019. [28] I. Makhnenko, E.R. Alonzi, S.A. Fredericks, C.M. Colby, C.S. Dutcher, A review of liquid sheet breakup:Perspectives from agricultural sprays, J. Aerosol Sci. 157(2021)105805. [29] Y.Y. Song, F. Zhu, C. Cao, L.D. Cao, F.M. Li, P.Y. Zhao, Q.L. Huang, Reducing pesticide spraying drift by folate/Zn2+ supramolecular hydrogels, Pest Manag. Sci. 77(11)(2021)5278-5285. [30] B. Liu, Y.X. Fan, H.F. Li, W.W. Zhao, S.Q. Luo, H.A. Wang, B. Guan, Q.L. Li, J.L. Yue, Z.C. Dong, Y.L. Wang, L. Jiang, Control the entire journey of pesticide application on superhydrophobic plant surface by dynamic covalent trimeric surfactant coacervation, Adv. Funct. Mater. 31(5)(2021)2006606. [31] D. Katzman, Y. Bohbot-Raviv, Y. Dubowski, Does polyacrylamide-based adjuvant actually reduce primary drift of airborne pesticides?Sci. Total Environ. 775(2021)145816. [32] X.M. Song, X. Xi, S.D. Xue, J.Y. Zhao, J.K. Han, X.H. Ma, Z. Lan, T.T. Hao, Effects of pesticide adjuvants on spray pendant droplet evaporation, J. Chem. Eng. Chin. Univ. 34(5)(2020)1143-1150, in Chinese. [33] S.C. Gao, G.B. Wang, Y.Y. Zhou, M. Wang, D.B. Yang, H.Z. Yuan, X.J. Yan, Water-soluble food dye of Allura Red as a tracer to determine the spray deposition of pesticide on target crops, Pest Manag. Sci. 75(10)(2019)2592-2597. [34] Y. He, S.P. Xiao, J.J. Wu, H. Fang, Influence of multiple factors on the wettability and surface free energy of leaf surface, Appl. Sci. 9(3)(2019)593. [35] Y.Y. Song, Q.L. Huang, G.Z. Huang, M.X. Liu, L.D. Cao, F.M. Li, P.Y. Zhao, C. Cao, The effects of adjuvants on the wetting and deposition of insecticide solutions on hydrophobic wheat leaves, Agronomy 12(9)(2022)2148. [36] A.L. Altieri, S.A. Cryer, Break-up of sprayed emulsions from flat-fan nozzles using a hole kinematics model, Biosyst. Eng. 169(2018)104-114. [37] R.B. Wang, G. Dorr, A. Hewitt, J. Cooper-White, Impacts of polymer/surfactant interactions on spray drift, Colloids Surf. A 500(2016)88-97. [38] C.L. Wang, A.J. Zeng, X.K. He, J.L. Song, A. Herbst, W.L. Gao, Spray drift characteristics test of unmanned aerial vehicle spray unit under wind tunnel conditions, Int. J. Agric. Biol. Eng. 13(3)(2020)13-21. [39] M.C. Butler Ellis, A.G. Lane, C.M. O'Sullivan, S. Jones, Wind tunnel investigation of the ability of drift-reducing nozzles to provide mitigation measures for bystander exposure to pesticides, Biosyst. Eng. 202(2021)152-164. [40] R. Alidoost Dafsari, S. Yu, Y. Choi, J. Lee, Effect of geometrical parameters of air-induction nozzles on droplet characteristics and behaviour, Biosyst. Eng. 209(2021)14-29. [41] J. Hu, C.X. Liu, Z.C. Wang, Y.F. Li, J.L. Song, Y.J. Liu, X. Chu, Motion model for describing the quantity of air in droplets through changing the structure of air induction nozzle, Int. J. Agric. Biol. Eng. 14(5)(2021)35-40. |