[1] J. Brinkmann, L. Exner, C. Luebbert, G. Sadowski, In-silico screening of lipid-based drug delivery systems, Pharm. Res. 37(12)(2020)249. [2] A. Prudic, A.K. Lesniak, Y.H. Ji, G. Sadowski, Thermodynamic phase behaviour of indomethacin/PLGA formulations, Eur. J. Pharm. Biopharm. 93(2015)88-94. [3] C. Luebbert, E. Stoyanov, G. Sadowski, Phase behavior of ASDs based on hydroxypropyl cellulose, Int. J. Pharm. X 3(2021)100070. [4] V.F. Leimann, O.H. Goncalves, G.D. Sorita, S. Rezende, E. Bona, I.P.M. Fernandes, I.C.F.R. Ferreira, M.F. Barreiro, Heat and pH stable curcumin-based hydrophilic colorants obtained by the solid dispersion technology assisted by spray-drying, Chem. Eng. Sci. 205(2019)248-258. [5] M.M. Knopp, L. Tajber, Y.W. Tian, N.E. Olesen, D.S. Jones, A. Kozyra, K. Lobmann, K. Paluch, C.M. Brennan, R. Holm, A.M. Healy, G.P. Andrews, T. Rades, Comparative study of different methods for the prediction of drug-polymer solubility, Mol. Pharm. 12(9)(2015)3408-3419. [6] A. Prudic, Y.H. Ji, C. Luebbert, G. Sadowski, Influence of humidity on the phase behavior of API/polymer formulations, Eur. J. Pharm. Biopharm. 94(2015)352-362. [7] J.J.F. Chen, D.P. Visco Jr, Developing an in silico pipeline for faster drug candidate discovery:virtual high throughput screening with the Signature molecular descriptor using support vector machine models, Chem. Eng. Sci. 159(2017)31-42. [8] S. Ekins, A.C. Puhl, K.M. Zorn, T.R. Lane, D.P. Russo, J.J. Klein, A.J. Hickey, A.M. Clark, Exploiting machine learning for end-to-end drug discovery and development, Nat. Mater. 18(5)(2019)435-441. [9] X.H. Che, S.Y. Chai, Z.Z. Zhang, L. Zhang, Prediction of ligand binding sites using improved blind docking method with a Machine Learning-Based scoring function, Chem. Eng. Sci. 261(2022)117962. [10] J. Vamathevan, D. Clark, P. Czodrowski, I. Dunham, E. Ferran, G. Lee, B. Li, A. Madabhushi, P. Shah, M. Spitzer, S.R. Zhao, Applications of machine learning in drug discovery and development, Nat. Rev. Drug Discov. 18(6)(2019)463-477. [11] S.W. Yue, M.C. Muniz, M.F. Calegari Andrade, L.F. Zhang, R. Car, A.Z. Panagiotopoulos, When do short-range atomistic machine-learning models fall short?J. Chem. Phys. 154(3)(2021)034111. [12] E.D. Miller, M.L. Jones, M.M. Henry, B. Stanfill, E. Jankowski, Machine learning predictions of electronic couplings for charge transport calculations of P3HT, AlChE. J. 65(12)(2019) e16760. [13] Y.Q. Wang, Q.M. Yao, J.T. Kwok, L.M. Ni, Generalizing from a few examples, ACM Comput. Surv. 53(3)(2021)1-34. [14] J. Peng, W. Sun, G.M. Zhou, L. Xie, H.S. Han, Y. Xiao, The accurate prediction and analysis of bed expansion characteristics in liquid-solid fluidized bed based on machine learning methods, Chem. Eng. Sci. 260(2022)117841. [15] G.E. Karniadakis, I.G. Kevrekidis, L. Lu, P. Perdikaris, S.F. Wang, L. Yang, Physics-informed machine learning, Nat. Rev. Phys. 3(6)(2021)422-440. [16] A. Prudic, Y.H. Ji, G. Sadowski, Thermodynamic phase behavior of API/polymer solid dispersions, Mol. Pharm. 11(7)(2014)2294-2304. [17] J. M. Prausnitz, R. N. Lichtenthaler, E. G. De Azevedo, Molecular thermodynamics of fluid-phase equilibria. Pearson Education:1998. [18] J. Gross, G. Sadowski, Perturbed-chain SAFT:an equation of state based on a perturbation theory for chain molecules, Ind. Eng. Chem. Res. 40(4)(2001)1244-1260. [19] J. Gross, G. Sadowski, Application of the perturbed-chain SAFT equation of state to associating systems, Ind. Eng. Chem. Res. 41(22)(2002)5510-5515. [20] J.P. Wolbach, S.I. Sandler, Using molecular orbital calculations to describe the phase behavior of cross-associating mixtures, Ind. Eng. Chem. Res. 37(8)(1998)2917-2928. [21] B. Wang, D.D. Wang, S. Zhao, X.B. Huang, J.B. Zhang, Y. Lv, X.C. Liu, G.J. Lv, X.J. Ma, Evaluate the ability of PVP to inhibit crystallization of amorphous solid dispersions by density functional theory and experimental verify, Eur. J. Pharm. Sci. 96(2017)45-52. [22] C. Gertig, L. Fleitmann, C. Hemprich, J. Hense, A. Bardow, K. Leonhard, CAT-COSMO-CAMPD:integrated in silico design of catalysts and processes based on quantum chemistry, Comput. Chem. Eng. 153(2021)107438. [23] S.F. Boys, F. Bernardi, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors, Mol. Phys. 19(4)(1970)553-566. [24] T. Lu, F.W. Chen, Multiwfn:a multifunctional wavefunction analyzer, J. Comput. Chem. 33(5)(2012)580-592. [25] W. Humphrey, A. Dalke, K. Schulten, VMD:visual molecular dynamics, J. Mol. Graph. 14(1)(1996)33-38. [26] K. Ge, Y.H. Ji, A thermodynamic approach for predicting thermodynamic phase behaviors of pharmaceuticals in biorelevant media, Chem. Eng. Sci. 261(2022)117973. [27] K. Ge, R. Paus, V. Penner, G. Sadowski, Y.H. Ji, Theoretical modeling and prediction of biorelevant solubility of poorly soluble pharmaceuticals, Chem. Eng. J. 444(2022)136678. [28] K. Lehmkemper, S.O. Kyeremateng, O. Heinzerling, M. Degenhardt, G. Sadowski, Impact of polymer type and relative humidity on the long-term physical stability of amorphous solid dispersions, Mol. Pharm. 14(12)(2017)4374-4386. [29] Y.W. Tian, J. Booth, E. Meehan, D.S. Jones, S. Li, G.P. Andrews, Construction of drug-polymer thermodynamic phase diagrams using Flory-Huggins interaction theory:identifying the relevance of temperature and drug weight fraction to phase separation within solid dispersions, Mol. Pharm. 10(1)(2013)236-248. [30] Y. Sun, J. Tao, G.G.Z. Zhang, L. Yu, Solubilities of crystalline drugs in polymers:an improved analytical method and comparison of solubilities of indomethacin and nifedipine in PVP, PVP/VA, and PVAc, J. Pharm. Sci. 99(9)(2010)4023-4031. [31] M. Maniruzzaman, J.Y. Pang, D.J. Morgan, D. Douroumis, Molecular modeling as a predictive tool for the development of solid dispersions, Mol. Pharm. 12(4)(2015)1040-1049. [32] T.X. Xiang, B.D. Anderson, Molecular dynamics simulation of amorphous indomethacin-poly (vinylpyrrolidone) glasses:solubility and hydrogen bonding interactions, J. Pharm. Sci. 102(3)(2013)876-891. [33] T.X. Xiang, B.D. Anderson, Effects of molecular interactions on miscibility and mobility of ibuprofen in amorphous solid dispersions with various polymers, J. Pharm. Sci. 108(1)(2019)178-186. [34] Y. Li, X.M. Liu, Y.Q. Zhang, K. Jiang, J.J. Wang, S.J. Zhang, Why only ionic liquids with unsaturated heterocyclic cations can dissolve cellulose:a simulation study, ACS Sustainable Chem. Eng. 5(4)(2017)3417-3428. [35] R. Han, H. Xiong, Z. Ye, Y.L. Yang, T.H. Huang, Q.F. Jing, J.H. Lu, H. Pan, F.Z. Ren, D.F. Ouyang, Predicting physical stability of solid dispersions by machine learning techniques, J. Control. Release 311-312(2019)16-25. [36] S. Goyal, A. Chattopadhyay, K. Kasavajhala, U.D. Priyakumar, Role of urea-aromatic stacking interactions in stabilizing the aromatic residues of the protein in urea-induced denatured state, J. Am. Chem. Soc. 139(42)(2017)14931-14946. [37] E. Espinosa, E. Molins, C. Lecomte, Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities, Chem. Phys. Lett. 285(3-4)(1998)170-173. [38] K. Lehmkemper, S.O. Kyeremateng, O. Heinzerling, M. Degenhardt, G. Sadowski, Long-term physical stability of PVP-and PVPVA-amorphous solid dispersions, Mol. Pharm. 14(1)(2017)157-171. [39] W.L. Dai, S. Cahyawijaya, Y.J. Bang, P. Fung, Weakly-supervised multi-task learning for multimodal affect recognition, arXiv (2021)2104.11560. [40] S.D. Thakore, J. Akhtar, R. Jain, A. Paudel, A.K. Bansal, Analytical and computational methods for the determination of drug-polymer solubility and miscibility, Mol. Pharm. 18(8)(2021)2835-2866. [41] W.Z. Zheng, Z.H. Ma, W.Z. Sun, L. Zhao, Target high-efficiency ionic liquids to promote H2SO4-catalyzed C4 alkylation by machine learning, AlChE. J. 68(7)(2022) e17698. [42] H.Q. Wen, Y. Su, Z.H. Wang, S.M. Jin, J.Z. Ren, W.F. Shen, M. Eden, A systematic modeling methodology of deep neural network-based structure-property relationship for rapid and reliable prediction on flashpoints, AlChE. J. 68(1)(2022) e17402. [43] K. Nurzynska, J. Booth, C.J. Roberts, J. McCabe, I. Dryden, P.M. Fischer, Long-term amorphous drug stability predictions using easily calculated, predicted, and measured parameters, Mol. Pharm. 12(9)(2015)3389-3398. [44] M. Przybylek, T. Jelinski, P. Cysewski, Application of multivariate adaptive regression splines (MARSplines) for predicting Hansen solubility parameters based on 1D and 2D molecular descriptors computed from SMILES string, J. Chem. 2019(2019)1-15. [45] M.D. Moore, P.L.D. Wildfong, Informatics calibration of a molecular descriptors database to predict solid dispersion potential of small molecule organic solids, Int. J. Pharm. 418(2)(2011)217-226. |