[1] K. Liu, Z.H. Wang, Z.B. Yin, L.Y. Cao, J.T. Yuan. Effect of Co content on microstructure and mechanical properties of ultrafine grained WC-Co cemented carbide sintered by spark plasma sintering. Ceram. Int. 44(2018)18711-18718. [2] K. Jia, T.E. Fischer, B. Gallois. Microstructure, hardness and toughness of nanostructured andconventional WC-Co composites. Nanostruct. Mater. 10(1998)875-891. [3] K. Jia, T.E. Fischer. Sliding wear of conventional and nanostructured cemented carbides. Wear. 203(1997)310-318. [4] Z.Z. Fang, W. Xu, T. Ryu. Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide-A review. Int. J. Refract. Met. H. 27(2009)288-299. [5] M.F. Zawrah. Synthesis and characterization of WC-Co nanocomposites by novel chemical method. Ceram. Int. 33(2007)155-161. [6] R. M. Raihanuzzaman, T. S. Jeong, R. Ghomashchi, Z.H. Xie, S.J. Hong.Characterization of short-duration high-energy ball milled WC-Co powders and subsequent consolidations. J. Alloy. Compd. 615(2014) S564-S568. [7] C. Wei, X. Song, S. Zhao, Z. Li, W. Liu. In-situ synthesis of WC-Co composite powder and densification by sinter-HIP. Int. J. Refract. Met. H. 28(2010)567-571. [8] Y. Li, K. Xie, J. Ye, Z. Meng, L. Liao. Preparation of core-shell WC-Co composite powder.Mater. Res. Innovations. 18(2014)289-293. [9] T. Ryu, H.Y. Sohn, K.S. Hwang, Z.Z. Fang. Plasma synthesis of tungsten carbide and cobalt nanocomposite powder. J. Alloys Compd. 481(2009)274-277. [10] H. Lin, J.C. Sun, C.H. Li, H. He, L.Z. Qin, Q. Li. A facile route to synthesize WC-Co nanocomposite powders and properties of sintered bulk. J. Alloys Compd. 682(2016)531-536. [11] Q. Yang, J. Yang, H. Yang, G. Ni, J. Ruan. Synthesis of ultrafine WC-10Co composite powders with carbon boat added and densification by sinter-hip. Int. J. Refract. Met. H. 62(2017)104-109. [12] H. Wang, C. Hou, X. Liu, X. Liu, X. Song. Phase evolution in synthesis of nanocrystalline WC-η composite powder by solid-state in situ reactions. Int. J. Refract. Met. H. 71(2017)21-27. [13] J. Ma, Y. Du. Synthesis of nanocrystalline hexagonal tungsten carbide via co-reduction of tungsten hexachloride and sodium carbonate with metallic magnesium. J. Alloys Compd. 448(2008)215-218. [14] Y. Pan, H. Xiong, Z. Li, X. Long. Synthesis of WC-Co composite powders with two-step carbonization and sintering performance study. Int. J. Refract. Met. H. 81(2019)127-136. [15] P. Choongkwon, K. Jiwoong, S. Kang. Effect of cobalt on the synthesis and sintering of WC-Co composite powders. J. Alloys Compd. 766(2018)564-571. [16] S. Popovic, B.G. PLENKOVIc. The doping method in quantitative X-ray diffraction phase analysis. J. Appl. Crystallogr. 16(1983)505-507. [17] Y. Lan, B. Deng, C. Kim, E.C. Thornton, H. Xu. Catalysis of elemental sulfur nanoparticles on chromium (VI) reduction by sulfide under anaerobic conditions. Environ. Sci. Technol. 39(2005)2087-2094. [18] F. Pan, J. Liu, Z. Du, Q. Zhu, S. Li. Reaction process of WC prepared under a CO atmosphere in a fluidized bed. Ind. Eng. Chem. Res. 60(2021)162-172. [19] K.C. Sabat, R.K. Paramguru, B.K. Mishra. Reduction of ooxide mixtures of (Fe2O3+CuO) and (Fe2O3+Co3O4) by low-temperature hydrogen plasma. Plasma Chem. Plasma P. 27(2017)979-995. [20] X. Xu, L. Zhang, Z. Guo, C. Wu. Reduction kinetics characteristic of nanometer tungsten trioxide powders. Powder metall. sci. tech. 20(2002)29-32. [21] A. Markstrom, K. Frisk, B. Sundman. A revised thermodynamic description of the Co-WC system. J PHASE EQUILIB DIFF. 26(2005)152-160. [22] S. Zhao, N. Liu, A. Chen. Effects of carbon content on microstructure and property of WC-13Co cemented carbide. HT. 32(2017)38-43. [23] Ishikawa T and Keister R G.A Petrochemical Alternative-ACR. Hydroc Proc. 1978, 109-113. [24] F. Pan, Z. Du, S. Li, J. Li, Q. Zhu. Preparation of nano-sized tungsten carbide via fluidized bed. Chin. J. Chem. Eng. 28(2020)306-315. [25] D.R. Lee, W.J. Lee. Fabrication of nano-sized WC/Co composite powder by direct reduction and carburization with carbon. Mater. Sci. Forum. 534-536(2007)1185-1188. [26] W. Liu, X. Song, J. Zhang, G. Zhang, X. Liu. Preparation of ultrafine WC-Co composite powder by in situ reduction and carbonization reactions. Int. J. Refract. Met. H. 27(2009)115-120. [27] H.Y. Lin, Y.W. Chen. The mechanism of reduction of cobalt by hydrogen, Mater. Chem. Phys. 85(2004)171-175. [28] A. Pasquazzi, W.D. Schubert, R. Weissenbacher, P. Schachinger. Cobalt oxide as a raw material for the production of WC-Co cemented carbides and its advantages for the pressing process. Int. J. Refract. Met. Hard Mater. 72(2017)104-109. [29] H.J. Da, C. Kang, M. Kim, H. Cheong, S.L. Jin. Effects of hydrogen partial pressure in the annealing process on graphene growth. J. Phys. Chem. C. 118(2014)3574-3580. [30] F, Pan, Q.S, Zhu, S.F, Li, M.Q, Xiang, Z, Du, Decomposition-carbonization of ammonium paratungstate in a fluidized bed, Int. J. Refract. Met. H. 72(2018)315-322. [31] D. Jie, K.C. Chou. A model for the reduction of metal oxides by carbon monoxide. ISIJ Int. 58(2018)595-593. [32] M. Zhang, K. Yang, Y. Yu. Insight into carbon formation from ethylene decomposition over Pd (100) via density functional theory calculations. Appl. Surf. Sci. 328(2015)583-590. [33] L. Wei, Y.S. Tan, Y.Z. Han, J.T. Zhao, J. Wu, D. Zhang, Hydrogen production by methane cracking over different coal chars. Fuel. 90(2011)3473-3479. [34] Y. Hu, Y. Yu. A density functional theory study on ethylene decomposition to carbon monomer on Cu (410) surface. Comp. Mater. Sci. 161(2019)321-329. [35] J. Salmones, J. Wang, Valenzuela MA, Sanchez E, Garcia A. Pore geometry influence on the deactivation behavior of Ni-based catalysts for simultaneous production of hydrogen and nanocarbon. Catal. Today. 148(2009)134-139. [36] J. Tuff, W.R. Taylor, D.H. Green. Solubility of carbon and hydrogen in melts at high pressures and reduced conditions. Geochim. Cosmochim. Acta. 70(2006) A658-A658. [37] T. Ryu, H.Y. Sohn, G. Han, Y.U. Kim, K.S. Hwang, M. Mena, Z.Z. Fang. Nanograined WC-Co composite powders by chemical vapor synthesis. Metall. Mater. Trans. B. 39(2008)1-6. [38] J. Lu, J.G. Yang, H. Chen, S.D. Guo, E.T. Zhu. Preparation of nanocrytalline WC-Co composite powder by spray-drying and low temperature reduction-carbonization process. Powder Metall. 18(2013)835-839. [39] G. Zimmermann, W. Zychlinski, H.M. Woerde, V. Paul. Absolute rates of coke formation:a relative measure for the assessment of the chemical behavior of high-temperature steels of different sources. Ind. Eng. Chem. Res. 37(1998)4302-4305. [40] F. D. Kopinke, G. Zimmermann, G. C. Reyniers, G. F. Froment. Relative rates of coke formation from hydrocarbons in steam cracking of naphtha. 3. Aromatic hydrocarbons. Ind. Eng. Chem. Res. 32(1993)411-424. [41] Z. Lu, M. Harb, M.N. Hedhili, N.A. Mana, J.M. Basset. Microemulsion prepared Ni88Pt12 for methane cracking. RSC Adv. 7(2017)4078-4082. |