[1] J.L. Mao, J.Z. Miao, Y.Y. Lu, Z.M. Tong, Machine learning of materials design and state prediction for lithium ion batteries, Chin. J. Chem. Eng. 37(2021)1-11. [2] L.Y. Hu, C.L. Dai, J.M. Lim, Y.M. Chen, X. Lian, M.Q. Wang, Y. Li, P.H. Xiao, G. Henkelman, M.W. Xu, A highly efficient double-hierarchical sulfur host for advanced lithium-sulfur batteries, Chem. Sci. 9(3)(2017)666-675. [3] W.Q. Yao, J. Chen, L. Zhan, Y.L. Wang, S.B. Yang, Two-dimensional porous sandwich-like C/Si-graphene-Si/C nanosheets for superior lithium storage, ACS Appl. Mater. Interfaces 9(45)(2017)39371-39379. [4] S.G. Chen, S.R. Jeong, S.W. Tao, Key materials and future perspective for aqueous rechargeable lithium-ion batteries, Mater. Rep. Energy 2(2)(2022)100096. [5] S.H. Tian, Q. Zeng, G. Liu, J.J. Huang, X. Sun, D. Wang, H.C. Yang, Z. Liu, X.C. Mo, Z.X. Wang, K. Tao, S.L. Peng, Multi-dimensional composite frame as bifunctional catalytic medium for ultra-fast charging lithium-sulfur battery, Nano Micro Lett. 14(1)(2022)196. [6] J. Scholz, B. Kayaalp, A.C. Juhl, D. Clemens, M. Froba, S. Mascotto, Severe loss ofconfined sulfur in nanoporous carbon for LieS batteries under wetting conditions, ACS Energy Lett. 3(2)(2018)387-392. [7] X. Wu, N.N. Liu, B. Guan, Y. Qiu, M.X. Wang, J.H. Cheng, D. Tian, L.S. Fan, N.Q. Zhang, K.N. Sun, Redox mediator:A new strategy in designing cathode for prompting redox process of Li-S batteries, Adv. Sci. 6(21)(2019)1900958. [8] C.Q. Shang, L.J. Cao, M.Y. Yang, Z.Y. Wang, M.C. Li, G.F. Zhou, X. Wang, Z.G. Lu, Freestanding Mo2C-decorating N-doped carbon nanofibers as 3D current collector for ultra-stable Li-S batteries, Energy Storage Mater. 18(2019)375-381. [9] Y. Hu, W. Chen, T.Y. Lei, Y. Jiao, J.W. Huang, A.J. Hu, C.H. Gong, C.Y. Yan, X.F. Wang, J. Xiong, Strategies toward high-loading lithiumesulfur battery, Adv. Energy Mater. 10(17)(2020)2000082. [10] L. Huang, J.J. Li, B. Liu, Y.H. Li, S.H. Shen, S.J. Deng, C.W. Lu, W.K. Zhang, Y. Xia, G.X. Pan, X.L. Wang, Q.Q. Xiong, X.H. Xia, J.P. Tu, Electrode design for lithiumesulfur batteries:Problems and solutions, Adv. Funct. Mater. 30(22)(2020)1910375. [11] C. Zhang, R.Y. Lyu, W. Lv, H. Li, W. Jiang, J. Li, S.C. Gu, G.M. Zhou, Z.J. Huang, Y. B. Zhang, J.Q. Wu, Q.H. Yang, F.Y. Kang, A lightweight 3D Cu nanowire network with phosphidation gradient as current collector for high-density nucleation and stable deposition of lithium, Adv. Mater. 31(48)(2019) e1904991. [12] Y.Y. Chang, J. Chen, Z. Zou, J. Li, C. Wu, Y.L. Jiang, Y. Chen, Q.X. Zeng, X.S. Wu, W. Sun, C.M. Li, Labyrinth maze-like long travel-reduction of sulfur and polysulfides in micropores of a spherical honeycomb carbon to greatly confine shuttle effects in lithium-sulfur batteries, Mater. Rep. Energy 2(4)(2022)100159. [13] S.Y. Liu, Z.H. Song, X. Jin, R.Y. Mao, T.P. Zhang, F.Y. Hu, MXenes for metal-ion and metal-sulfur batteries:Synthesis, properties, and electrochemistry, Mater. Rep. Energy 2(1)(2022)100077. [14] Q.Q. Huang, M.Q. Chen, Z. Su, L.Y. Tian, Y.Y. Zhang, D.H. Long, Rational cooperativity of nanospace confinement and rapid catalysis via hollow carbon nanospheres@Nb-based inorganics for high-rate Li-S batteries, Chem. Eng. J. 411(2021)128504. [15] P.T. Xiao, F.X. Bu, G.H. Yang, Y. Zhang, Y.X. Xu, Integration of graphene, nano sulfur, and conducting polymer into compact, flexible lithium-sulfur battery cathodes with ultrahigh volumetric capacity and superior cycling stability for foldable devices, Adv. Mater. 29(40)(2017)1703324. [16] Y.B. Zeng, F.Q. Chang, Q. Liu, L.Z. Duan, D.L. Li, H.C. Zhang, Recent advances and perspectives on the sources and detection of antibiotics in aquatic environments, J. Anal. Methods Chem. 2022(2022)5091181. [17] M.H. Cheng, R. Yan, Z. Yang, X.F. Tao, T. Ma, S.J. Cao, F. Ran, S. Li, W. Yang, C. Cheng, Polysulfide catalytic materials for fast-kinetic metal-sulfur batteries:Principles and active centers, Adv. Sci. 9(2)(2022) e2102217. [18] J. Wu, Z.J. Pan, Y. Dai, T. Wang, H.P. Zhang, S. Yan, J.M. Xu, K.X. Song, Encapsulation of sulfur cathodes by sericin-derived carbon/Co3O4 hollow microspheres for the long-term cyclability of lithium-sulfur batteries, J. Alloys Compd. 823(2020)153912. [19] P.H. Ji, B. Shang, Q.M. Peng, X.B. Hu, J.W. Wei, a-MoO3 spheres as effective polysulfides adsorbent for high sulfur content cathode in lithium-sulfur batteries, J. Power Sources 400(2018)572-579. [20] L.B. Ni, S.Q. Duan, H.Y. Zhang, J. Gu, G.J. Zhao, Z.X. Lv, G. Yang, Z.Y. Ma, Y. Liu, Y. S. Fu, Z. Wu, J. Xie, M. Chen, G.W. Diao, A 3D Graphene/WO3 nanowire composite with enhanced capture and polysulfides conversion catalysis for high-performance LieS batteries, Carbon 182(2021)335-347. [21] X. Shi, I.Y. Choi, K. Zhang, J. Kwon, D.Y. Kim, J.K. Lee, S.H. Oh, J.K. Kim, J.H. Park, Efficient photoelectrochemical hydrogen production from bismuth vanadatedecorated tungsten trioxide helix nanostructures, Nat. Commun. 5(2014)4775. [22] D. Chandra, K. Saito, T. Yui, M. Yagi, Crystallization of tungsten trioxide having small mesopores:Highly efficient photoanode for visible-light-driven water oxidation, Angew. Chem. Int. Ed. Engl. 52(48)(2013)12606-12609. [23] X.Y. Lu, D.D. Wang, H.Q. Guo, P.C. Xiu, J.J. Chen, Y. Qin, H.M. Robin, C.Z. Xu, X.G. Zhang, X.L. Gu, Insights into depolymerization pathways and mechanism of alkali lignin over a Ni1.2-ZrO2/WO3/γ-Al2O3 catalyst, Chin. J. Chem. Eng. 48(2022)191-201. [24] Z.S. Chen, G.X. Zhang, Y.R. Wen, N. Chen, W.F. Chen, T. Regier, J. Dynes, Y. Zheng, S.H. Sun, Atomically dispersed Fe-co bimetallic catalysts for the promoted electroreduction of carbon dioxide, Nano Micro Lett. 14(1)(2021)25. [25] Z.G. Liang, L.M. Zhang, H. Liu, J.P. Zeng, J.F. Zhou, H.J. Li, H. Xia, Formation of monodisperse carbon spheres with tunable size via triblock copolymer-assisted synthesis and their capacitor properties, Nanosc. Res. Lett. 14(1)(2019)124. [26] X.M. Guo, J.F. Xie, J. Wang, S.Q. Sun, F. Zhang, F. Cao, Y.J. Liu, X.J. Zheng, J.H. Zhang, Q.H. Kong, Fabricating titanium dioxide/N-doped carbon nanofibers as advanced interlayer for improving cycling reversibility of lithium-sulfur batteries, Chin. J. Chem. Eng. 52(2022)88-94. [27] H.T. Wang, X.Y. Qiu, W. Wang, L.P. Jiang, H.F. Liu, Iron sulfide nanoparticles embedded into a nitrogen and sulfur Co-doped carbon sphere as a highly active oxygen reduction electrocatalyst, Front. Chem. 7(2019)855. [28] D.Q. He, X.J. Liu, X.R. Li, P.Z. Lyu, J.X. Chen, Z.H. Rao, Regulating the polysulfide redox kinetics for high-performance lithium-sulfur batteries through highly sulfiphilic FeWO4 nanorods, Chem. Eng. J. 419(2021)129509. [29] M.D. Sun, D.X. Pan, T.T. Ye, J. Gu, Y. Zhou, J. Wang, Ionic porous polyamide derived N-doped carbon towards highly selective electroreduction of CO2, Chin. J. Chem. Eng. 55(2023)212-221. [30] D.Q. He, J.B. Liu, B.X. Zhang, M. Wang, C.Z. Liu, Y.T. Huo, Z.H. Rao, Enhancing adsorption and catalytic activity of Marigold-like In2S3 in lithium-sulfur batteries by vacancy modification, Chem. Eng. J. 427(2022)131711. [31] Y.B. Wang, Y. Jiang, Y.X. Zhao, X.L. Ge, Q. Lu, T. Zhang, D.S. Xie, M. Li, Y.F. Bu, Design strategies of perovskite nanofibers electrocatalysts for water splitting:a mini review, Chem. Eng. J. 451(2023)138710. [32] L. Jiao, C. Zhang, C.N. Geng, S.C. Wu, H. Li, W. Lv, Y. Tao, Z.J. Chen, G.M. Zhou, J. Li, G.W. Ling, Y. Wan, Q.H. Yang, Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithiumesulfur batteries, Adv. Energy Mater. 9(19)(2019)1900219. [33] Y.J. Zhong, X.M. Xu, Y. Liu, W. Wang, Z.P. Shao, Recent progress in metaleorganic frameworks for lithiumesulfur batteries, Polyhedron 155(2018)464-484. [34] L.M. Zhang, W.Q. Zhao, S.H. Yuan, F. Jiang, X.Q. Chen, Y. Yang, P. Ge, W. Sun, X. B. Ji, Engineering the morphology/porosity of oxygen-doped carbon for sulfur host as lithium-sulfur batteries, J. Energy Chem. 60(2021)531-545. [35] L.X. Yuan, X.P. Qiu, L.Q. Chen, W.T. Zhu, New insight into the discharge process of sulfur cathode by electrochemical impedance spectroscopy, J. Power Sources 189(1)(2009)127-132. [36] J.B. Li, Y.W. Chen, S.M. Zhang, W.F. Xie, S.M. Xu, G.R. Wang, M.F. Shao, Coordinating adsorption and catalytic activity of polysulfide on hierarchical integrated electrodes for high-performance flexible Li-S batteries, ACS Appl. Mater. Interfaces 12(44)(2020)49519-49529. [37] W. Chen, T.Y. Lei, W.Q. Lv, Y. Hu, Y.C. Yan, Y. Jiao, W.D. He, Z.H. Li, C.L. Yan, J. Xiong, Atomic interlamellar ion path in high sulfur content lithium-montmorillonite host enables high-rate and stable lithium-sulfur battery, Adv. Mater. 30(40)(2018) e1804084. [38] P.Z. Lyu, X.J. Liu, J. Qu, J.T. Zhao, Y.T. Huo, Z.G. Qu, Z.H. Rao, Recent advances of thermal safety of lithium ion battery for energy storage, Energy Storage Mater. 31(2020)195-220. [39] F. Yin, Q. Jin, H. Gao, X.T. Zhang, Z.G. Zhang, A strategy to achieve high loading and high energy density Li-S batteries, J. Energy Chem. 53(2021)340-346. [40] L.D. Lin, F. Liang, K.Y. Zhang, H.Z. Mao, J. Yang, Y.T. Qian, Lithium phosphide/lithium chloride coating on lithium for advanced lithium metal anode, J. Mater. Chem. A 6(32)(2018)15859-15867. [41] M.J. Shi, Z. Liu, S. Zhang, S.C. Liang, Y.T. Jiang, H. Bai, Z.M. Jiang, J. Chang, J. Feng, W.S. Chen, H.P. Yu, S.X. Liu, T. Wei, Z.J. Fan, A MotteSchottky heterogeneous layer for LieS batteries:Enabling both high stability and commercial-sulfur utilization, Adv. Energy Mater. 12(14)(2022)2103657. |