中国化学工程学报 ›› 2024, Vol. 67 ›› Issue (3): 206-219.DOI: 10.1016/j.cjche.2023.10.014
Xian Sun1, Peng Xiao1, Qinfeng Shi2, Lingban Wang1, Zhenbin Xu1, Yuhao Bu1, Xiaohui Wang1, Yifei Sun1, Changyu Sun1, Guangjin Chen1
收稿日期:
2023-06-28
修回日期:
2023-10-25
出版日期:
2024-03-28
发布日期:
2024-06-01
通讯作者:
Changyu Sun,E-mail address:cysun@cup.edu.cn;Guangjin Chen,E-mail address:gjchen@cup.edu.cn.
基金资助:
Xian Sun1, Peng Xiao1, Qinfeng Shi2, Lingban Wang1, Zhenbin Xu1, Yuhao Bu1, Xiaohui Wang1, Yifei Sun1, Changyu Sun1, Guangjin Chen1
Received:
2023-06-28
Revised:
2023-10-25
Online:
2024-03-28
Published:
2024-06-01
Contact:
Changyu Sun,E-mail address:cysun@cup.edu.cn;Guangjin Chen,E-mail address:gjchen@cup.edu.cn.
Supported by:
摘要: Natural gas hydrate is an energy resource for methane that has a carbon quantity twice more than all traditional fossil fuels combined. However, their practical application in the field has been limited due to the challenges of long-term preparation, high costs and associated risks. Experimental studies, on the other hand, offer a safe and cost-effective means of exploring the mechanisms of hydrate dissociation and optimizing exploitation conditions. Gas hydrate decomposition is a complicated process along with intrinsic kinetics, mass transfer and heat transfer, which are the influencing factors for hydrate decomposition rate. The identification of the rate-limiting factor for hydrate dissociation during depressurization varies with the scale of the reservoir, making it challenging to extrapolate findings from laboratory experiments to the actual exploitation. This review aims to summarize current knowledge of investigations on hydrate decomposition on the subject of the research scale (core scale, middle scale, large scale and field tests) and to analyze determining factors for decomposition rate, considering the various research scales and their associated influencing factors.
Xian Sun, Peng Xiao, Qinfeng Shi, Lingban Wang, Zhenbin Xu, Yuhao Bu, Xiaohui Wang, Yifei Sun, Changyu Sun, Guangjin Chen. Rate-limiting factors in hydrate decomposition through depressurization across various scales: A mini-review[J]. 中国化学工程学报, 2024, 67(3): 206-219.
Xian Sun, Peng Xiao, Qinfeng Shi, Lingban Wang, Zhenbin Xu, Yuhao Bu, Xiaohui Wang, Yifei Sun, Changyu Sun, Guangjin Chen. Rate-limiting factors in hydrate decomposition through depressurization across various scales: A mini-review[J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 206-219.
[1] Y.F. Makogon, Natural gas hydrateseA promising source of energy, J. Nat. Gas Sci. Eng. 2(1)(2010)49-59. [2] Q.C. Wan, H. Si, B. Li, G. Li, Heat transfer analysis of methane hydrate dissociation by depressurization and thermal stimulation, Int. J. Heat Mass Tran. 127(2018)206-217. [3] J.F. Zhao, Z.H. Zhu, Y.C. Song, W.G. Liu, Y. Zhang, D.Y. Wang, Analyzing the process of gas production for natural gas hydrate using depressurization, Appl. Energy 142(2015)125-134. [4] X.S. Li, B. Yang, Y. Zhang, G. Li, L.P. Duan, Y. Wang, Z.Y. Chen, N.S. Huang, H.J. Wu, Experimental investigation into gas production from methane hydrate in sediment by depressurization in a novel pilot-scale hydrate simulator, Appl. Energy 93(2012)722-732. [5] M.J. Yang, Z. Fu, Y.C. Zhao, L.L. Jiang, J.F. Zhao, Y.C. Song, Effect of depressurization pressure on methane recovery from hydrate-gas-water bearing sediments, Fuel 166(2016)419-426. [6] B. Li, Y.P. Liang, X.S. Li, L. Zhou, A pilot-scale study of gas production from hydrate deposits with two-spot horizontal well system, Appl. Energy 176(2016)12-21. [7] J. Lee, Experimental study on the dissociation behavior and productivity of gas hydrate by brine injection scheme in porous rock, Energy Fuels 24(1)(2010)456-463. [8] Q. Yuan, C.Y. Sun, X.H. Wang, X.Y. Zeng, X. Yang, B. Liu, Z.W. Ma, Q.P. Li, L. Feng, G.J. Chen, Experimental study of gas production from hydrate dissociation with continuous injection mode using a three-dimensional quiescent reactor, Fuel 106(2013)417-424. [9] J.F. Zhao, J.Q. Wang, W.G. Liu, Y.C. Song, Analysis of heat transfer effects on gas production from methane hydrate by thermal stimulation, Int. J. Heat Mass Tran. 87(2015)145-150. [10] Z.R. Chong, G.A. Pujar, M.J. Yang, P. Linga, Methane hydrate formation in excess water simulating marine locations and the impact of thermal stimulation on energy recovery, Appl. Energy 177(2016)409-421. [11] G.C. Fitzgerald, M.J. Castaldi, Thermal stimulation based methane production from hydrate bearing quartz sediment, Ind. Eng. Chem. Res. 52(19)(2013)6571-6581. [12] D.Y. Koh, H. Kang, J.W. Lee, Y. Park, S.J. Kim, J. Lee, J.Y. Lee, H.E. Lee, Energyefficient natural gas hydrate production using gas exchange, Appl. Energy 162(2016)114-130. [13] P.G. Brewer, E.T. Peltzer, P.M. Walz, E.K. Coward, L.A. Stern, S.H. Kirby, J. Pinkston, Deep-sea field test of the CH4 hydrate to CO2 hydrate spontaneous conversion hypothesis, Energy Fuels 28(11)(2014)7061-7069. [14] O. Ors, C. Sinayuc, An experimental study on the CO2eCH4 swap process between gaseous CO2 and CH4 hydrate in porous media, J. Petrol. Sci. Eng. 119(2014)156-162. [15] Y. Wang, J.C. Feng, X.S. Li, Y. Zhang, G. Li, Analytic modeling and large-scale experimental study of mass and heat transfer during hydrate dissociation in sediment with different dissociation methods, Energy 90(2015)1931-1948. [16] Y.P. Liang, X.S. Li, B. Li, Assessment of gas production potential from hydrate reservoir in Qilian Mountain permafrost using five-spot horizontal well system, Energies 8(10)(2015)10796-10817. [17] Y. Wang, X.S. Li, G. Li, Y. Zhang, B. Li, J.C. Feng, A three-dimensional study on methane hydrate decomposition with different methods using five-spot well, Appl. Energy 112(2013)83-92. [18] Z.R. Chong, Z.Y. Yin, J.H.C. Tan, P. Linga, Experimental investigations on energy recovery from water-saturated hydrate bearing sediments via depressurization approach, Appl. Energy 204(2017)1513-1525. [19] R.H. Sun, Z. Fan, M.J. Yang, W.X. Pang, Y.P. Li, Y.C. Song, Experimental investigation into the dissociation of methane hydrate near ice-freezing point induced by depressurization and the concomitant metastable phases, J. Nat. Gas Sci. Eng. 65(2019)125-134. [20] S. Hancock, T. Collett, S. Dallimore, T. Satoh, T. Inoue, E. Huenges, J. Henninges, B. Weatherill, Overview of thermal-stimulation production-test results for the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well, in:Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program, 2005. [21] T. Fujii, K. Suzuki, T. Takayama, M. Tamaki, Y. Komatsu, Y. Konno, J. Yoneda, K. Yamamoto, J. Nagao, Geological setting and characterization of a methane hydrate reservoir distributed at the first offshore production test site on the Daini-Atsumi Knoll in the eastern Nankai Trough, Japan, Mar. Petrol. Geol. 66(2015)310-322. [22] F.G. Li, Q. Yuan, T.D. Li, L. Zhi, C.Y. Sun, G.J. Chen, A review:Enhanced recovery of natural gas hydrate reservoirs, Chin. J. Chem. Eng. 27(2019)2062-2073. [23] Z.Y. Yin, Q.C. Wan, Q. Gao, P. Linga, Effect of pressure drawdown rate on the fluid production behaviour from methane hydrate-bearing sediments, Appl. Energy 271(2020)115195. [24] Y. Wang, J.C. Feng, X.S. Li, L. Zhan, X.Y. Li, Pilot-scale experimental evaluation of gas recovery from methane hydrate using cycling-depressurization scheme, Energy 160(2018)835-844. [25] Y. Wang, J.C. Feng, X.S. Li, Pilot-scale experimental test on gas production from methane hydrate decomposition using depressurization assisted with heat stimulation below quadruple point, Int. J. Heat Mass Tran. 131(2019)965-972. [26] B. Wang, Z. Fan, P.F. Wang, Y. Liu, J.F. Zhao, Y.C. Song, Analysis of depressurization mode on gas recovery from methane hydrate deposits and the concomitant ice generation, Appl. Energy 227(2018)624-633. [27] H. Oyama, Y. Konno, K. Suzuki, J. Nagao, Depressurized dissociation of methane-hydrate-bearing natural cores with low permeability, Chem. Eng. Sci. 68(1)(2012)595-605. [28] L.G. Tang, X.S. Li, Z.P. Feng, G. Li, S.S. Fan, Control mechanisms for gas hydrate production by depressurization in different scale hydrate reservoirs, Energy Fuels 21(1)(2007)227-233. [29] H.C. Kim, P.R. Bishnoi, R.A. Heidemann, S.S.H. Rizvi, Kinetics of methane hydrate decomposition, Chem. Eng. Sci. 42(7)(1987)1645-1653. [30] Y. Wang, J.C. Feng, X.S. Li, Y. Zhang, Experimental and modeling analyses of scaling criteria for methane hydrate dissociation in sediment by depressurization, Appl. Energy 181(2016)299-309. [31] Z.R. Chong, S.H.B. Yang, P. Babu, P. Linga, X.S. Li, Review of natural gas hydrates as an energy resource:Prospects and challenges, Appl. Energy 162(2016)1633-1652. [32] H.O. Kono, S. Narasimhan, F. Song, D.H. Smith, Synthesis of methane gas hydrate in porous sediments and its dissociation by depressurizing, Powder Technol. 122(2-3)(2002)239-246. [33] M.Y. Liang, G.J. Chen, C.Y. Sun, L.J. Yan, J. Liu, Q.L. Ma, Experimental and modeling study on decomposition kinetics of methane hydrates in different media, J. Phys. Chem. B 109(40)(2005)19034-19041. [34] W.F. Waite, T.J. Kneafsey, W.J. Winters, D.H. Mason, Physical property changes in hydrate-bearing sediment due to depressurization and subsequent repressurization, J. Geophys. Res. 113(B7)(2008) B07102. [35] D. Katsuki, R. Ohmura, T. Ebinuma, H. Narita, Visual observation of dissociation of methane hydrate crystals in a glass micro model:Production and transfer of methane, J. Appl. Phys. 104(8)(2008)083514. [36] X.S. Li, L.H. Wan, G. Li, Experimental investigation into the production behavior of methane hydrate in porous sediment with hot brine stimulation, Ind. Eng. Chem. Res. 47(2008)9696-9702. [37] H. Oyama, Y. Konno, Y. Masuda, H. Narita, Dependence of depressurizationinduced dissociation of methane hydrate bearing laboratory cores on heat transfer, Energy Fuels 23(10)(2009)4995-5002. [38] A. Gupta, G.J. Moridis, T.J. Kneafsey, E.D. Sloan Jr., Modeling pure methane hydrate dissociation using a numerical simulator from a novel combination of X-ray computed tomography and macroscopic data, Energy Fuels 23(12)(2009)5958-5965. [39] Y.H. Bai, Q.P. Li, Y. Zhao, X.F. Li, Y. Du, The experimental and numerical studies on gas production from hydrate reservoir by depressurization, Transp. Porous Medium 79(3)(2009)443-468. [40] Y.E. Zhou, M.J. Castaldi, T.M. Yegulalp, Experimental investigation of methane gas production from methane hydrate, Ind. Eng. Chem. Res. 48(6)(2009)3142-3149. [41] J. Lee, S. Park, W. Sung, An experimental study on the productivity of dissociated gas from gas hydrate by depressurization scheme, Energy Convers. Manag. 51(12)(2010)2510-2515. [42] J.Y. Lee, J.C. Santamarina, C. Ruppel, Volume change associated with formation and dissociation of hydrate in sediment, G-cubed 11(3)(2010) Q03007. [43] K.H. Su, C.Y. Sun, X. Yang, G.J. Chen, S.S. Fan, Experimental investigation of methane hydrate decomposition by depressurizing in porous media with 3-dimension device, J. Nat. Gas Chem. 19(3)(2010)210-216. [44] C. Haligva, P. Linga, J.A. Ripmeester, P. Englezos, Recovery of methane from a variable-volume bed of silica sand/hydrate by depressurization, Energy Fuels 24(5)(2010)2947-2955. [45] X.S. Li, Y. Wang, G. Li, Y. Zhang, Experimental investigations into gas production behaviors from methane hydrate with different methods in a cubic hydrate simulator, Energy Fuels 26(2)(2012)1124-1134. [46] X.S. Li, Y. Zhang, G. Li, Z.Y. Chen, H.J. Wu, Experimental investigation into the production behavior of methane hydrate in porous sediment by depressurization with a novel three-dimensional cubic hydrate simulator, Energy Fuels 25(10)(2011)4497-4505. [47] Q.B. Wu, Y.M. Wang, J. Zhan, Effect of rapidly depressurizing and rising temperature on methane hydrate dissociation, J. Nat. Gas Chem. 21(1)(2012)91-97. [48] X. Yang, C.Y. Sun, K.H. Su, Q. Yuan, Q.P. Li, G.J. Chen, A three-dimensional study on the formation and dissociation of methane hydrate in porous sediment by depressurization, Energy Convers. Manag. 56(2012)1-7. [49] G. Li, B. Li, X.S. Li, Y. Zhang, Y. Wang, Experimental and numerical studies on gas production from methane hydrate in porous media by depressurization in pilot-scale hydrate simulator, Energy Fuels 26(10)(2012)6300-6310. [50] S. Falser, S. Uchida, A.C. Palmer, K. Soga, T.S. Tan, Increased gas production from hydrates by combining depressurization with heating of the wellbore, Energy Fuels 26(10)(2012)6259-6267. [51] A. Kumar, B. Maini, P.R. Bishnoi, M. Clarke, Investigation of the variation of the surface area of gas hydrates during dissociation by depressurization in porous media, Energy Fuels 27(10)(2013)5757-5769. [52] J.Y. Sun, Y.G. Ye, C.L. Liu, J.A. Zhang, Experimental study on gas production from methane hydrate bearing sand by depressurization, Appl. Mech. Mater. 310(2013)28-32. [53] S. Falser, A.C. Palmer, K.B. Cheong, T.T. Soon, Temperature increase during the depressurization of partially hydrate-saturated formations within the stability region, Energy Fuels 27(2)(2013)796-803. [54] J.F. Zhao, X.Q. Chen, Y.C. Song, Z.H. Zhu, L. Yang, Y.L. Tian, J.Q. Wang, M.J. Yang, Y. Zhang, Experimental study on a novel way of methane hydrates recovery:Combining CO2 replacement and depressurization, Energy Proc. 61(2014)75-79. [55] B. Li, X.S. Li, G. Li, J.C. Feng, Y. Wang, Depressurization induced gas production from hydrate deposits with low gas saturation in a pilot-scale hydrate simulator, Appl. Energy 129(2014)274-286. [56] Y. Konno, Y. Jin, K. Shinjou, J. Nagao, Experimental evaluation of the gas recovery factor of methane hydrate in sandy sediment, RSC Adv. 4(93)(2014)51666-51675. [57] M. Hyodo, Y.H. Li, J. Yoneda, Y. Nakata, N. Yoshimoto, A. Nishimura, Effects of dissociation on the shear strength and deformation behavior of methane hydrate-bearing sediments, Mar. Petrol. Geol. 51(2014)52-62. [58] M. Loh, J.L. Too, S. Falser, P. Linga, B.C. Khoo, A. Palmer, Gas production from methane hydrates in a dual wellbore system, Energy Fuels 29(1)(2015)35-42. [59] Y. Zhang, X.S. Li, Z.Y. Chen, X.K. Ruan, N.S. Huang, Methane hydrate dissociation by depressurization in sediments with different hydrate saturations in cubic hydrate simulator, Energy Proc. 61(2014)990-994. [60] Y.C. Song, C.X. Cheng, J.F. Zhao, Z.H. Zhu, W.G. Liu, M.J. Yang, K.H. Xue, Evaluation of gas production from methane hydrates using depressurization, thermal stimulation and combined methods, Appl. Energy 145(2015)265-277. [61] Y. Zhang, X.S. Li, Z.Y. Chen, Y. Wang, X.K. Ruan, Effect of hydrate saturation on the methane hydrate dissociation by depressurization in sediments in a cubic hydrate simulator, Ind. Eng. Chem. Res. 54(10)(2015)2627-2637. [62] J.C. Feng, Y. Wang, X.S. Li, G. Li, Z.Y. Chen, Production behaviors and heat transfer characteristics of methane hydrate dissociation by depressurization in conjunction with warm water stimulation with dual horizontal wells, Energy 79(2015)315-324. [63] Y.H. Li, W.G. Liu, Y.M. Zhu, Y.F. Chen, Y.C. Song, Q.P. Li, Mechanical behaviors of permafrost-associated methane hydrate-bearing sediments under different mining methods, Appl. Energy 162(2016)1627-1632. [64] J.C. Feng, Y. Wang, X.S. Li, Y. Zhang, Influence of hydrate saturation on methane hydrate dissociation by depressurization in conjunction with warm water stimulation in the silica sand reservoir, Energy Fuels 29(12)(2015)7875-7884. [65] S.L. Wang, M.J. Yang, P.F. Wang, Y.C. Zhao, Y.C. Song, In situ observation of methane hydrate dissociation under different backpressures, Energy Fuels 29(5)(2015)3251-3256. [66] H. Oyama, T. Sato, J. Nagao, Investigation of depressurization with wellbore heating method for Artificial Methane Hydrate Cores, OCEANS 2016, IEEE, Shanghai, China, 2016, pp. 1-6. [67] L.X. Zhang, J.F. Zhao, H.S. Dong, Y.C. Zhao, Y. Liu, Y. Zhang, Y.C. Song, Magnetic resonance imaging for in situ observation of the effect of depressurizing range and rate on methane hydrate dissociation, Chem. Eng. Sci. 144(2016)135-143. [68] Y. Wang, J.C. Feng, X.S. Li, Y. Zhang, G. Li, Large scale experimental evaluation to methane hydrate dissociation below quadruple point in sandy sediment, Appl. Energy 162(2016)372-381. [69] Y. Wang, J.C. Feng, X.S. Li, Y. Zhang, Z.Y. Chen, Large scale experimental investigation on influences of reservoir temperature and production pressure on gas production from methane hydrate in sandy sediment, Energy Fuels 30(4)(2016)2760-2770. [70] D.X. Li, S.R. Ren, L.A. Zhang, Y.X. Liu, Dynamic behavior of hydrate dissociation for gas production via depressurization and its influencing factors, J. Petrol. Sci. Eng. 146(2016)552-560. [71] J.C. Feng, Y. Wang, X.S. Li, Energy and entropy analyses of hydrate dissociation in different scales of hydrate simulator, Energy 102(2016)176-186. [72] J.C. Feng, Y. Wang, X.S. Li, Hydrate dissociation induced by depressurization in conjunction with warm brine stimulation in cubic hydrate simulator with silica sand, Appl. Energy 174(2016)181-191. [73] H. Minagawa, T. Ito, S. Kimura, H. Kaneko, S. Noda, N. Tenma, Depressurization and electrical heating of methane hydrate sediment for gas production:laboratory-scale experiments, J. Nat. Gas Sci. Eng. 50(2018)147-156. [74] Y.H. Sun, K. Su, S.L. Li, J. Carroll, Y.H. Zhu, Experimental investigation into the dissociation behavior of CH4eC2H6-C3H8 hydrates in sandy sediments by depressurization, Energy Fuels 32(2017)204-213. [75] B. Wang, H.S. Dong, Y.Z. Liu, X. Lv, Y. Liu, J.F. Zhao, Y.C. Song, Evaluation of thermal stimulation on gas production from depressurized methane hydrate deposits, Appl. Energy 227(2018)710-718. [76] Z. Fan, C.M. Sun, Y.M. Kuang, B. Wang, J.F. Zhao, Y.C. Song, MRI analysis for methane hydrate dissociation by depressurization and the concomitant ice generation, Energy Proc. 105(2017)4763-4768. [77] Y.R. Jin, S.X. Li, D.Y. Yang, X.X. Jiang, Determination of dissociation front and operational optimization for hydrate development by combining depressurization and hot brine stimulation, J. Nat. Gas Sci. Eng. 50(2018)215-230. [78] B. Li, S.D. Liu, Y.P. Liang, Experimental study of methane hydrate dissociation by depressurization and electrical heating, Energy Proc. 105(2017)5018-5025. [79] J.C. Feng, Y. Wang, X.S. Li, Large scale experimental evaluation to methane hydrate dissociation below quadruple point by depressurization assisted with heat stimulation, Energy Proc. 142(2017)4117-4123. [80] M.J. Yang, Z. Fu, L.L. Jiang, Y.C. Song, Gas recovery from depressurized methane hydrate deposits with different water saturations, Appl. Energy 187(2017)180-188. [81] B. Wang, H.S. Dong, Z. Fan, J.F. Zhao, Y.C. Song, Gas production from methane hydrate deposits induced by depressurization in conjunction with thermal stimulation, Energy Proc. 105(2017)4713-4717. [82] J.C. Feng, Y. Wang, X.S. Li, Entropy generation analysis of hydrate dissociation by depressurization with horizontal well in different scales of hydrate reservoirs, Energy 125(2017)62-71. [83] J.S. Lu, Y.M. Xiong, D.L. Li, X.D. Shen, Q. Wu, D.Q. Liang, Experimental investigation of characteristics of sand production in wellbore during hydrate exploitation by the depressurization method, Energies 11(7)(2018)1673. [84] Y. Chen, Y.H. Gao, L.T. Chen, X.R. Wang, K. Liu, B.J. Sun, Experimental investigation of the behavior of methane gas hydrates during depressurization-assisted CO2 replacement, J. Nat. Gas Sci. Eng. 61(2019)284-292. [85] D.L. Li, Q. Wu, Z. Wang, J.S. Lu, D.Q. Liang, X.S. Li, Tri-axial shear tests on hydrate-bearing sediments during hydrate dissociation with depressurization, Energies 11(7)(2018)1819. [86] T.T. Luo, Y.H. Li, W.G. Liu, Y.C. Song, Experimental studies on gas production rate of in situ hydrate-bearing clay in thermal recovery and depressurization methods, Energy Proc. 158(2019)5251-5256. [87] Y. Gao, M.J. Yang, J.N. Zheng, B.B. Chen, Production characteristics of two class water-excess methane hydrate deposits during depressurization, Fuel 232(2018)99-107. [88] G. Han, T.H. Kwon, J.Y. Lee, T.J. Kneafsey, Depressurization-induced fines migration in sediments containing methane hydrate:X-ray computed tomography imaging experiments, J. Geophys. Res. 123(4)(2018)2539-2558. [89] V.C. Nair, S.K. Prasad, R. Kumar, J.S. Sangwai, Energy recovery from simulated clayey gas hydrate reservoir using depressurization by constant rate gas release, thermal stimulation and their combinations, Appl. Energy 225(2018)755-768. [90] Y.P. Liang, S. Liu, W.T. Zhao, B. Li, Q.C. Wan, G. Li, Effects of vertical center well and side well on hydrate exploitation by depressurization and combination method with wellbore heating, J. Nat. Gas Sci. Eng. 55(2018)154-164. [91] Y. Gao, Z.Q. Ma, M.J. Yang, Y.C. Song, X. Lv, Dissociation characteristic of remolded methane hydrates deposits from South China Sea using depressurization, Energy Proc. 158(2019)5355-5360. [92] L. Zhan, Y. Wang, X.S. Li, Experimental study on characteristics of methane hydrate formation and dissociation in porous medium with different particle sizes using depressurization, Fuel 230(2018)37-44. [93] M.J. Yang, J.N. Zheng, Y. Gao, Z.Q. Ma, X. Lv, Y.C. Song, Dissociation characteristics of methane hydrates in South China Sea sediments by depressurization, Appl. Energy 243(2019)266-273. [94] T. Lv, X.S. Li, Z.Y. Chen, D. Sun, Y. Zhang, K.F. Yan, J. Cai, Experimental investigation on the production behaviors of methane hydrate in sandy sediments by different depressurization strategies, Energy Technol. 6(12)(2018)2501-2511. [95] Z.Y. Liu, M.J. Yang, Y. Liu, Y.C. Song, Q.P. Li, Analyzing the Joule-Thomson effect on wellbore in methane hydrate depressurization with different back pressure, Energy Proc. 158(2019)5390-5395. [96] B.B. Chen, H.R. Sun, K.H. Li, D.Y. Wang, M.J. Yang, Experimental investigation of natural gas hydrate production characteristics via novel combination modes of depressurization with water flow erosion, Fuel 252(2019)295-303. [97] S. Almenningen, P. Fotland, M.A. Fernø, G. Ersland, An experimental investigation of gas-production rates during depressurization of sedimentary methane hydrates, SPE J. 24(2)(2019)522-530. [98] Z.F. Sun, S. Jia, Q. Yuan, C.Y. Sun, G.J. Chen, One-dimensional study on gas production characteristics of methane hydrate in clayey sediments using depressurization method, Fuel 262(2020)116561. [99] Y. Zhang, T. Wang, X.S. Li, K.F. Yan, Y. Wang, Z.Y. Chen, Decomposition behaviors of methane hydrate in porous media below the ice melting point by depressurization, Chin. J. Chem. Eng. 27(9)(2019)2207-2212. [100] Z.Y. Yin, L. Huang, P. Linga, Effect of wellbore design on the production behaviour of methane hydrate-bearing sediments induced by depressurization, Appl. Energy 254(2019)113635. [101] M.J. Yang, Z.Q. Ma, Y. Gao, L.L. Jiang, Dissociation characteristics of methane hydrate using depressurization combined with thermal stimulation, Chin. J. Chem. Eng. 27(2019)2089-2098. [102] Z.F. Sun, N. Li, J.L. Cui, Q. Yuan, C.Y. Sun, G.J. Chen, A novel method to methane hydrate exploitation efficiency via forming impermeable overlying CO2 cap, Appl. Energy 240(2019)842-850. [103] V. Chandrasekharan Nair, P. Gupta, J.S. Sangwai, Natural gas production from a marine clayey hydrate reservoir formed in seawater using depressurization at constant pressure, depressurization by constant rate gas release, thermal stimulation, and their implications for real field applications, Energy Fuels 33(4)(2019)3108-3122. [104] S.S. Shu, A.H. Tiwikrama, C.D. Yang, M.J. Lee, Phase equilibrium and dynamic behavior of methane hydrates decomposition via depressurization in the presence of a promoter tert butanol, J. Taiwan Inst. Chem. Eng. 95(2019)119-130. [105] X. Kou, Y. Wang, X.S. Li, Y. Zhang, Z.Y. Chen, Influence of heat conduction and heat convection on hydrate dissociation by depressurization in a pilot-scale hydrate simulator, Appl. Energy 251(2019)113405. [106] L.L. Ren, M. Jiang, L.B. Wang, Y.J. Zhu, Z. Li, C.Y. Sun, G.J. Chen, Gas hydrate exploitation and carbon dioxide sequestration under maintaining the stiffness of hydrate-bearing sediments, Energy 194(2020)116869. [107] M.J. Yang, Y. Gao, H. Zhou, B.B. Chen, Y.H. Li, Gas production from different classes of methane hydrate deposits by the depressurization method, Int. J. Energy Res. 43(10)(2019)5493-5505. [108] Y.R. Jin, D.Y. Yang, S.X. Li, W.X. Pang, Hydrate dissociation conditioned to depressurization below the quadruple point and salinity addition, Fuel 255(2019)115758. [109] Y.F. Wang, L.B. Wang, Y. Li, J.X. Gu, C.Y. Sun, G.J. Chen, X.H. Wang, Q. Yuan, N. Li, Effect of temperature on gas production from hydrate-bearing sediments by using a large 196-L reactor, Fuel 275(2020)117963. [110] J.H. Choi, J.S. Lin, S. Dai, L. Lei, Y. Seol, Triaxial compression of hydratebearing sediments undergoing hydrate dissociation by depressurization, Geomech. Energy Environ. 23(2020)100187. [111] Y. Xie, T. Zheng, J.R. Zhong, Y.J. Zhu, Y.F. Wang, Y. Zhang, R. Li, Q. Yuan, C.Y. Sun, G.J. Chen, Experimental research on self-preservation effect of methane hydrate in porous sediments, Appl. Energy 268(2020)115008. [112] A. Heydari, K. Peyvandi, Study of biosurfactant effects onmethane recovery from gas hydrate by CO2 replacement and depressurization, Fuel 272(2020)117681. [113] S. Circone, L.A. Stern, S.H. Kirby, The role of water in gas hydrate dissociation, J. Phys. Chem. B 108(18)(2004)5747-5755. [114] S.R. Davies, M.S. Selim, E.D. Sloan, P. Bollavaram, D.J. Peters, Hydrate plug dissociation, AIChE J. 52(12)(2006)4016-4027. [115] Y.C. Song, L.X. Zhang, Q. Lv, M.J. Yang, Z. Ling, J.F. Zhao, Assessment of gas production from natural gas hydrate using depressurization, thermal stimulation and combined methods, RSC Adv. 6(53)(2016)47357-47367. [116] X.W. Guo, L. Xu, B. Wang, L.J. Sun, Y.L. Liu, R.P. Wei, L. Yang, J.F. Zhao, Optimized gas and water production from water-saturated hydrate-bearing sediment through step-wise depressurization combined with thermal stimulation, Appl. Energy 276(2020)115438. [117] J.A. He, X.S. Li, Z.Y. Chen, Q.P. Li, Y. Zhang, Y. Wang, C.Y. You, Study on methane hydrate distributions in laboratory samples by electrical resistance characteristics during hydrate formation, J. Nat. Gas Sci. Eng. 80(2020)103385. [118] X. Kou, X.S. Li, Y. Wang, Y. Zhang, Z.Y. Chen, Distribution and reformation characteristics of gas hydrate during hydrate dissociation by thermal stimulation and depressurization methods, Appl. Energy 277(2020)115575. [119] Y. Lee, C. Deusner, E. Kossel, W. Choi, Y. Seo, M. Haeckel, Influence of CH4 hydrate exploitation using depressurization and replacement methods on mechanical strength of hydrate-bearing sediment, Appl. Energy 277(2020)115569. [120] B. Li, L.L. Chen, Q.C. Wan, X. Han, Y.Q. Wu, Y.J. Luo, Experimental study of frozen gas hydrate decomposition towards gas recovery from permafrost hydrate deposits below freezing point, Fuel 280(2020)118557. [121] B. Li, W.N. Wei, Q.C. Wan, K. Peng, L.L. Chen, Numerical investigation into the development performance of gas hydrate by depressurization based on heat transfer and entropy generation analyses, Entropy 22(11)(2020)1212. [122] X.Y. Li, X.S. Li, Y. Wang, Y. Zhang, Optimization of the production pressure for hydrate dissociation by depressurization, Energy Fuels 34(2020)4296-4306. [123] T.T. Luo, Y.H. Li, B.N. Madhusudhan, X. Sun, Y.C. Song, Deformation behaviors of hydrate-bearing silty sediment induced by depressurization and thermal recovery, Appl. Energy 276(2020)115468. [124] X.K. Ruan, X.S. Li, Investigation of the methane hydrate surface area during depressurization-induced dissociation in hydrate-bearing porous media, Chin. J. Chem. Eng. 32(2021)324-334. [125] Y.Z. Shao, L.B. Yang, Q. Zhang, S.D. Wang, K.F. Wang, R.Z. Xu, Numerical study on gas production from methane hydrate reservoir by depressurization in a reactor, Renew. Sustain. Energy Rev. 134(2020)110330. [126] H.R. Sun, B.B. Chen, G.J. Zhao, Y.C. Zhao, M.J. Yang, Y.C. Song, The enhancement effect of wateregas two-phase flow on depressurization process:Important for gas hydrate production, Appl. Energy 276(2020)115559. [127] Y. Kanda, J. Okajima, S. Maruyama, A. Komiya, Visualization of methane hydrate decomposition interface and analyses of decomposition rate and interfacial configuration, Phys. Fluids 32(4)(2020)047105. [128] Q.C. Wan, L.L. Chen, B. Li, K. Peng, Y.Q. Wu, Insights into the control mechanism of heat transfer on methane hydrate dissociation via depressurization and wellbore heating, Ind. Eng. Chem. Res. 59(22)(2020)10651-10663. [129] Q.C. Wan, H. Si, B. Li, Z.Y. Yin, Q. Gao, S. Liu, X. Han, L.L. Chen, Energy recovery enhancement from gas hydrate based on the optimization of thermal stimulation modes and depressurization, Appl. Energy 278(2020)115612. [130] Q.C. Wan, H. Si, G. Li, J.C. Feng, B. Li, Heterogeneity properties of methane hydrate formation in a pilot-scale hydrate simulator, Appl. Energy 261(2020)114325. [131] Y. Wang, X. Kou, J.C. Feng, X.S. Li, Y. Zhang, Sediment deformation and strain evaluation during methane hydrate dissociation in a novel experimental apparatus, Appl. Energy 262(2020)114397. [132] Z.R. Wu, W.G. Liu, J.N. Zheng, Y.H. Li, Effect of methane hydrate dissociation and reformation on the permeability of clayey sediments, Appl. Energy 261(2020)114479. [133] J.F. Zhao, Y.L. Liu, X.W. Guo, R.P. Wei, T.B. Yu, L. Xu, L.J. Sun, L. Yang, Gas production behavior from hydrate-bearing fine natural sediments through optimized step-wise depressurization, Appl. Energy 260(2020)114275. [134] J. Zhao, J.N. Zheng, S.H. Ma, Y.C. Song, M.J. Yang, Formation and production characteristics of methane hydrates from marine sediments in a core holder, Appl. Energy 275(2020)115393. [135] J.N. Zheng, X.R. Wang, Z.Q. Ma, M.J. Yang, Production behaviors of watersaturated methane hydrate deposits during the depressurization with/without thermal water compensation process, Energy Fuels 35(2)(2021)1638-1647. [136] C.Y. Sun, G.J. Chen, Methane hydrate dissociation above 0℃ and below 0℃, Fluid Phase Equil. 242(2)(2006)123-128. [137] M. Clarke, P.R. Bishnoi, Determination of the intrinsic rate of ethane gas hydrate decomposition, Chem. Eng. Sci. 55(21)(2000)4869-4883. [138] H. Hong, M. Pooladi-Darvish, P. Bishnoi, Analytical modelling of gas production from hydrates in porous media, J. Can. Petrol. Technol. 42(2003)45-56. [139] M.B. Kowalsky, G.J. Moridis, Comparison of kinetic and equilibrium reaction models in simulating gas hydrate behavior in porous media, Energy Convers. Manag. 48(6)(2007)1850-1863. [140] Z.Y. Yin, Z.R. Chong, H.K. Tan, P. Linga, Review of gas hydrate dissociation kinetic models for energy recovery, J. Nat. Gas Sci. Eng. 35(2016)1362-1387. [141] K. Nazridoust, G. Ahmadi, Computational modeling of methane hydrate dissociation in a sandstone core, Chem. Eng. Sci. 62(22)(2007)6155-6177. [142] W.Y. Sean, T. Sato, A. Yamasaki, F. Kiyono, CFD and experimental study on methane hydrate dissociation. Part I. Dissociation under water flow, AIChE J. 53(1)(2007)262-274. [143] W.Y. Sean, T. Sato, A. Yamasaki, F. Kiyono, CFD and experimental study on methane hydrate dissociation. Part II. General cases, AlChE. J. 53(8)(2007)2148-2160. [144] M.S. Selim, E.D. Sloan, Heat and mass transfer during the dissociation of hydrates in porous media, AIChE J. 35(6)(1989)1049-1052. [145] S. Gerami, M. Pooladi-Darvish, Predicting gas generation by depressurization of gas hydrates where the sharp-interface assumption is not valid, J. Petrol. Sci. Eng. 56(1-3)(2007)146-164. [146] X.F. Sun, K.K. Mohanty, Kinetic simulation of methane hydrate formation and dissociation in porous media, Chem. Eng. Sci. 61(11)(2006)3476-3495. [147] W.Q. Chen, R.L. Hartman, Methane hydrate intrinsic dissociation kinetics measured in a microfluidic system by means of in situ Raman spectroscopy, Energy Fuels 32(11)(2018)11761-11771. [148] K.H. Su, C.Y. Sun, A. Dandekar, B. Liu, W.Z. Sun, M.C. Cao, N. Li, X.Y. Zhong, X. Q. Guo, Q.L. Ma, L.Y. Yang, G.J. Chen, Experimental investigation of hydrate accumulation distribution in gas seeping system using a large scale threedimensional simulation device, Chem. Eng. Sci. 82(2012)246-259. [149] J.M. Schicks, E. Spangenberg, R. Giese, B. Steinhauer, J. Klump, M. Luzi, New approaches for the production of hydrocarbons from hydrate bearing sediments, Energies 4(1)(2011)151-172. [150] X.S. Li, B. Yang, L.P. Duan, G. Li, N.S. Huang, Y. Zhang, Experimental study on gas production from methane hydrate in porous media by SAGD method, Appl. Energy 112(2013)1233-1240. [151] X.S. Li, Y. Wang, G. Li, Y. Zhang, Z.Y. Chen, Experimental investigation into methane hydrate decomposition during three-dimensional thermal huff and puff, Energy Fuels 25(4)(2011)1650-1658. [152] W.M. Sung, D.G. Huh, B.J. Ryu, H.S. Lee, Development and application of gas hydrate reservoir simulator based on depressurizing mechanism, Kor. J. Chem. Eng. 17(3)(2000)344-350. [153] W. Sung, H. Kang, Experimental investigation of production behaviors of methane hydrate saturated in porous rock, Energy Sources 25(8)(2003)845-856. [154] C.G. Xu, X.S. Li, Research progress on methane production from natural gas hydrates, RSC Adv. 5(67)(2015)54672-54699. [155] Y. Seol, E. Myshakin, Experimental and numerical observations of hydrate reformation during depressurization in a core-scale reactor, Energy Fuels 25(3)(2011)1099-1110. [156] G.G. Tsypkin, Mathematical model of the dissociation of gas hydrates coexisting with ice in natural reservoirs, Fluid Dynam. 28(2)(1993)223-229. [157] Y. Konno, H. Oyama, J. Nagao, Y. Masuda, M. Kurihara, Numerical analysis of the dissociation experiment of naturally occurring gas hydrate in sediment cores obtained at the eastern Nankai Trough, Japan, Energy Fuels 24(12)(2010)6353-6358. [158] V.I. Vasil'ev, V.V. Popov, G.G. Tsypkin, Numerical investigation of the decomposition of gas hydrates coexisting with gas in natural reservoirs, Fluid Dynam. 41(4)(2006)599-605. [159] R.Y. Zheng, S.X. Li, Q.P. Li, X.L. Li, Study on the relations between controlling mechanisms and dissociation front of gas hydrate reservoirs, Appl. Energy 215(2018)405-415. [160] X.S. Li, C.G. Xu, Y. Zhang, X.K. Ruan, G. Li, Y. Wang, Investigation into gas production from natural gas hydrate:A review, Appl. Energy 172(2016)286-322. [161] R.Y. Zheng, S.X. Li, Q.P. Li, Y.M. Hao, Using similarity theory to design natural gas hydrate experimental model, J. Nat. Gas Sci. Eng. 22(2015)421-427. [162] X. Sun, N. Nanchary, K.K. Mohanty, 1-D modeling of hydrate depressurization in porous media, Transp, Porous Medium 58(3)(2005)315-338. [163] Y. Wang, J.C. Feng, X.S. Li, Y. Zhang, G. Li, Large scale experimental evaluation to methane hydrate dissociation below quadruple point in sandy sediment, Appl. Energy 162(2016)372-381. [164] Y. Wang, J.C. Feng, X.S. Li, Y. Zhang, Z.Y. Chen, Fluid flow mechanisms and heat transfer characteristics of gas recovery from gas-saturated and water-saturated hydrate reservoirs, Int. J. Heat Mass Tran. 118(2018)1115-1127. [165] V.A. Kamath, Study of Heat Transfer Characteristics during Dissociation of Gas Hydrates in Porous Media, Pittsburgh University, USA, 1984. [166] M. Kurihara, A. Sato, K. Funatsu, H. Ouchi, K. Yamamoto, M. Numasawa, T. Ebinuma, H. Narita, Y. Masuda, S. Dallimore, F. Wright, D. Ashford, Analysis of production data for 2007/2008 mallik gas hydrate production tests in Canada. Proceedings of the International Oil and Gas Conference and Exhibition in China, 2010. [167] T. Collett, J. Bahk, M. Frye, D. Goldberg, J. Husebø, C. Koh, M. Malone, C. Shipp, M. Torres, Historical Methane Hydrate Project Review, USGS Publications Warehouse, 70074263(2013). [168] J.F. Li, J.L. Ye, X.W. Qin, H.J. Qiu, N.Y. Wu, H.L. Lu, W.W. Xie, J.G. Lu, F. Peng, Z. Q. Xu, C. Lu, Z.G. Kuang, J.G. Wei, Q.Y. Liang, H.F. Lu, B.B. Kou, The first offshore natural gas hydrate production test in South China Sea, China Geol 1(1)(2018)5-16. [169] M. Tamaki, T. Fujii, K. Suzuki, Characterization and prediction of the gas hydrate reservoir at the second offshore gas production test site in the eastern Nankai Trough, Japan, Energies 10(10)(2017)1678. [170] J.L. Ye, X.W. Qin, W.W. Xie, H.L. Lu, B.J. Ma, H.J. Qiu, J.Q. Liang, J.A. Lu, Z.G. Kuang, C. Lu, Q.Y. Liang, S.P. Wei, Y.J. Yu, C.S. Liu, B. Li, K.X. Shen, H.X. Shi, Q.P. Lu, J. Li, B.B. Kou, G. Song, B. Li, H.E. Zhang, H.F. Lu, C. Ma, Y.F. Dong, H. Bian, The second natural gas hydrate production test in the South China Sea, China Geol 3(2)(2020)197-209. [171] T.S. Collett, Gas hydrates:Update on international activities, U.S, Geol Surv (2014)1-77. [172] K. Qorbani, B. Kvamme, Non-equilibrium simulation of CH4 production from gas hydrate reservoirs through the depressurization method, J. Nat. Gas Sci. Eng. 35(2016)1544-1554. [173] X. Wang, B. Dong, F. Wang, W.Z. Li, Y.C. Song, Pore-scale investigations on the effects of ice formation/melting on methane hydrate dissociation using depressurization, Int. J. Heat Mass Tran. 131(2019)737-749. [174] M.W. Lee, T.S. Collett, Pore-and fracture-filling gas hydrate reservoirs in the gulf of Mexico gas hydrate joint industry project leg II green canyon 955 H well, Mar. Petrol. Geol. 34(1)(2012)62-71. [175] T. Akaki, S. Kimoto, F. Oka, Dynamic analysis of hydrate-bearing seabed sediments considering methane gas production induced by depressurization, Jpn. Geotech. Soc. Spec. Publ. 2(18)(2016)676-680. [176] X.S. Li, B. Yang, G. Li, B. Li, Numerical simulation of gas production from natural gas hydrate using a single horizontal well by depressurization in Qilian Mountain permafrost, Ind. Eng. Chem. Res. 51(11)(2012)4424-4432. [177] J.C. Feng, G. Li, X.S. Li, B. Li, Z.Y. Chen, Evolution of hydrate dissociation by warm brine stimulation combined depressurization in the South China Sea, Energies 6(10)(2013)5402-5425. [178] J.F. Zhao, C.C. Ye, Y.C. Song, W.G. Liu, C.X. Cheng, Y. Liu, Y. Zhang, D.Y. Wang, X.K. Ruan, Numerical simulation and analysis of water phase effect on methane hydrate dissociation by depressurization, Ind. Eng. Chem. Res. 51(7)(2012)3108-3118. [179] X. Sun, T.T. Luo, L. Wang, H.J. Wang, Y.C. Song, Y.H. Li, Numerical simulation of gas recovery from a low-permeability hydrate reservoir by depressurization, Appl. Energy 250(2019)7-18. |
[1] | Hongnan Chen, Yifei Sun, Bojian Cao, Minglong Wang, Ming Wang, Jinrong Zhong, Changyu Sun, Guangjin Chen. Enhanced gas production and CO2 storage in hydrate-bearing sediments via pre-depressurization and rapid CO2 injection[J]. 中国化学工程学报, 2024, 67(3): 126-134. |
[2] | Wenchang Wu, Kefan Yu, Liang Zhao, Hui Dong. Computational fluid dynamics modeling of rapid pyrolysis of solid waste magnesium nitrate hydrate under different injection methods[J]. 中国化学工程学报, 2024, 66(2): 224-237. |
[3] | Tatyana P. Adamova, Sergey S. Skiba, Andrey Yu. Manakov, Sergey Y. Misyura. Growth rate of CO2 hydrate film on water–oil and water–gaseous CO2 interface[J]. 中国化学工程学报, 2023, 56(4): 266-272. |
[4] | Lei Sun, Zhongjun Zhao, Xiushan Yang, Yan Sun, Quande Li, Chunhui Luo, Qiang Zhao. Thermochemical decomposition of phosphogypsum with Fe-P slag via a solid-state reaction[J]. 中国化学工程学报, 2022, 47(7): 113-119. |
[5] | Weizhou Jiao, Xingyue Wei, Shengjuan Shao, Youzhi Liu. Catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-Mn-Cu/γ-Al2O3 in a rotating packed bed[J]. 中国化学工程学报, 2022, 45(5): 133-142. |
[6] | Yu Zhang, Lei Zhang, Chang Chen, Hao-Peng Zeng, Xiao-Sen Li, Bo Yang. Role of different types of water in bentonite clay on hydrate formation and decomposition[J]. 中国化学工程学报, 2022, 50(10): 310-316. |
[7] | Peng-Fei Shen, Gang Li, Xiao-Sen Li, Bo Li, Jin-Ming Zhang. Application of fracturing technology to increase gas production in low-permeability hydrate reservoir: A numerical study[J]. 中国化学工程学报, 2021, 34(6): 267-277. |
[8] | Ekta Chaturvedi, Sukumar Laik, Ajay Mandal. A comprehensive review of the effect of different kinetic promoters on methane hydrate formation[J]. 中国化学工程学报, 2021, 32(4): 1-16. |
[9] | Xuke Ruan, Xiao-Sen Li. Investigation of the methane hydrate surface area during depressurization-induced dissociation in hydrate-bearing porous media[J]. 中国化学工程学报, 2021, 32(4): 324-334. |
[10] | Qihui Hu, Xiaoyu Wang, Wuchang Wang, Yuxing Li, Shuai Liu. Growth and aggregation micromorphology of natural gas hydrate particles near gas-liquid interface under stirring condition[J]. 中国化学工程学报, 2021, 40(12): 65-77. |
[11] | Shuqi Fang, Xinyue Zhang, Jingyi Zhang, Chun Chang, Pan Li, Jing Bai. Evaluation on the natural gas hydrate formation process[J]. 中国化学工程学报, 2020, 28(3): 881-888. |
[12] | Vyacheslav G. Smirnov, Valeriy V. Dyrdin, Andrey Yu. Manakov, Zinfer R. Ismagilov. Decomposition of carbon dioxide hydrate in the samples of natural coal with different degrees of metamorphism[J]. 中国化学工程学报, 2020, 28(2): 492-501. |
[13] | Chungang Xu, Xiaosen Li, Kefeng Yan, Xuke Ruan, Zhaoyang Chen, Zhiming Xia. Research progress in hydrate-based technologies and processes in China: A review[J]. 中国化学工程学报, 2019, 27(9): 1998-2013. |
[14] | Jianan Zheng, Fanbao Cheng, Yuanping Li, Xin Lü, Mingjun Yang. Progress and trends in hydrate based desalination (HBD) technology: A review[J]. 中国化学工程学报, 2019, 27(9): 2037-2043. |
[15] | Prajakta Nakate, Bappa Ghosh, Subhadip Das, Sudip Roy, Rajnish Kumar. Molecular dynamics study on growth of carbon dioxide and methane hydrate from a seed crystal[J]. 中国化学工程学报, 2019, 27(9): 2074-2080. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||