[1] A.H. Masso, D.F. Rudd, The synthesis of system designs. II. Heuristic structuring, AlChE. J. 15(1)(1969)10-17. [2] B. Linnhoff, Flower J.R, Synthesis of heat exchanger networks:I. Systematic generation of energy optimal networks, AlChE. J. 24(4)(1978)633-642. [3] B. Linnhoff, S. Ahmad, Cost optimum heat exchanger networks-1. Minimum energy and capital using simple models for capital cost, Comput. Chem. Eng. 14(7)(1990)729-750. [4] S. Ahmad, B. Linnhoff, R. Smith, Cost optimum heat exchanger networks-2. targets and design for detailed capital cost models, Comput. Chem. Eng. 14(7)(1990)751-767. [5] R. Colberg, Area, cost and resilience targets for heat exchanger networks, Dissertation (Ph.D.), California Institute of Technology, Pasadena, USA,1989. [6] J. Cerda, A.W. Westerberg, D. Mason, B. Linnhoff, Minimum utility usage in heat exchanger network synthesis A transportation problem, Chem. Eng. Sci. 38(3)(1983)373-387. [7] J. Cerda, A.W. Westerburg, Synthesizing heat exchanger networks having restricted stream/stream matches using transportation problem formulations, Chem. Eng. Sci. 38(10)(1983)1723-1740. [8] S.A. Papoulias, I.E. Grossmann, A structural optimization approach in process synthesis-III, Comput. Chem. Eng. 7(6)(1983)723-734. [9] M. Escobar, J.O. Trierweiler, Optimal heat exchanger network synthesis:a case study comparison, Appl. Therm. Eng. 51(1-2)(2013)801-826. [10] C.A. Floudas, A.R. Ciric, I.E. Grossmann, Automatic synthesis of optimum heat exchanger network configurations, AlChE. J. 32(2)(1986)276-290. [11] T.F. Yee, I.E. Grossmann, Simultaneous optimization models for heat integration-II. Heat exchanger network synthesis, Comput. Chem. Eng. 14(10)(1990)1165-1184. [12] S.Y. Kim, M. Bagajewicz, Global optimization of heat exchanger networks using a new generalized superstructure, Chem. Eng. Sci. 147(2016)30-46. [13] K.M. Bjork, T. Westerlund, Global optimization of heat exchanger network synthesis problems with and without the isothermal mixing assumption, Comput. Chem. Eng. 26(11)(2002)1581-1593. [14] K.F. Huang, E.M. Al-mutairi, I.A. Karimi, Heat exchanger network synthesis using a stagewise superstructure with non-isothermal mixing, Chem. Eng. Sci. 73(2012)30-43. [15] P. Jongsuwat, U. Suriyapraphadilok, M. Bagajewicz, New heat exchanger network design model, Chem. Eng. Trans. 39(Special Issue)(2014)121-126. [16] J.M. Zamora, I.E. Grossmann, A comprehensive global optimization approach for the synthesis of heat exchanger networks with no stream splits, Comput. Chem. Eng. 21(1997) S65-S70. [17] C.S. Adjiman, I.P. Androulakis, C.A. Floudas, Global optimization of MINLP problems in process synthesis and design, Comput. Chem. Eng. 21(1997) S445-S450. [18] M.L. Bergamini, I. Grossmann, N. Scenna, P. Aguirre, An improved piecewise outer-approximation algorithm for the global optimization of MINLP models involving concave and bilinear terms, Comput. Chem. Eng. 32(3)(2008)477-493. [19] S.Y. Kim, P. Jongsuwat, U. Suriyapraphadilok, Bagajewicz M, Global optimization of heat exchanger networks. part 1:stages/substages superstructure, Ind.&Eng. Chem. Res. 56(2017)5944-5957. [20] D.C. Faria, S.Y. Kim, M.J. Bagajewicz, Global optimization of the stage-wise superstructure model for heat exchanger networks, Ind. Eng. Chem. Res. 54(5)(2015)1595-1604. [21] C.L. Chang, A. Peccini, Y.F. Wang, A.L.H. Costa, M.J. Bagajewicz, Globally optimal synthesis of heat exchanger networks. Part I:Minimal networks, AlChE. J. 66(7)(2020)16267. [22] C.L. Chang, Z.W. Liao, A.L.H. Costa, M.J. Bagajewicz, Globally optimal synthesis of heat exchanger networks. Part II:Non-minimal networks, AlChE. J. 66(7)(2020)16264. [23] C.L. Chang, Z.W. Liao, A.L.H. Costa, M.J. Bagajewicz, Globally optimal synthesis of heat exchanger networks. Part III:Non-isothermal mixing in minimal and non-minimal networks, AlChE. J. 67(11)(2021)17393. [24] K.C. Furman, N.V. Sahinidis, Computational complexity of heat exchanger network synthesis, Comput. Chem. Eng. 25(9-10)(2001)1371-1390. [25] M.A.S.S. Ravagnani, A.P. Silva, P.A. Arroyo, A.A. Constantino, Heat exchanger network synthesis and optimisation using genetic algorithm, Appl. Therm. Eng. 25(7)(2005)1003-1017. [26] F.Y. Peng, G.M. Cui, Efficient simultaneous synthesis for heat exchanger network with simulated annealing algorithm, Appl. Therm. Eng. 78(2015)136-149. [27] L.V. Pavao, C.B.B. Costa, M.A. da Silva Sa Ravagnani, L. Jimenez, Large-scale heat exchanger networks synthesis using simulated annealing and the novel rocket fireworks optimization, AlChE. J. 63(5)(2017)1582-1601. [28] K.M. Yerramsetty, C.V.S. Murty, Synthesis of cost-optimal heat exchanger networks using differential evolution, Comput. Chem. Eng. 32(8)(2008)1861-1876. [29] M. Dorigo, G. Di Caro, Ant colony optimization:a new meta-heuristic. Proceedings of the 1999 Congress on Evolutionary Computation-CEC99(Cat. No. 99TH8406). Washington, DC, USA. IEEE,(2002)1470-1477. [30] H.L. Zhang, G.M. Cui, Optimal heat exchanger network synthesis based on improved cuckoo search via Levy flights, Chem. Eng. Res. Des. 134(2018)62-79. [31] C.D. Hubbs, C. Li, N.V. Sahinidis, I.E. Grossmann, J.M. Wassick, A deep reinforcement learning approach for chemical production scheduling, Comput. Chem. Eng. 141(2020)106982. [32] J.C. Hoskins, D.M. Himmelblau, Process control via artificial neural networks and reinforcement learning, Comput. Chem. Eng. 16(4)(1992)241-251. [33] A. Khan, A. Lapkin, Searching for optimal process routes:a reinforcement learning approach, Comput. Chem. Eng. 141(2020)107027. [34] L. Stops, R. Leenhouts, Q.H. Gao, A.M. Schweidtmann, Flowsheet generation through hierarchical reinforcement learning and graph neural networks, AlChE. J. 69(1)(2023)17938. [35] R. Bellman, Dynamic programming, Science 153(3731)(1966)34-37. [36] C.J.C.H. Watkins, P. Dayan, Technical note:q-learning, Mach. Learn. 8(3)(1992)279-292. [37] M. Escobar, I.E. Grossmann, Mixed-Integer Nonlinear Programming Models for Optimal Simultaneous Synthesis of Heat Exchangers Network,(2010). www.minlp.org/library/problem/index.php?i=93. [38] E. Castillo, L. Acevedo, A. Reverberi, Cleaner production of nitric acid by heat transfer optimization:a case study, Chem. Biochem. Eng. Q. 12(2018)157-165. [39] A.P. Silva, M.A.S.S. Ravagnani, E.C. Biscaia, J.A. Caballero, Optimal heat exchanger network synthesis usingparticle swarm optimization, Optim. Eng. 11(3)(2010)459-470. [40] L.V. Pavao, C.B.B. Costa, M.A. da Silva Sa Ravagnani, Automated heat exchanger network synthesis by using hybrid natural algorithms and parallel processing, Comput. Chem. Eng. 94(2016)370-386. [41] A. Sorak, Z. Kravanja, Simultaneous MINLP synthesis of heat exchanger networks comprising different exchanger types, Comput. Aided Chem. Eng. 9(2001)1095-1100. [42] Y. Xiao, G.M. Cui, A novel Random Walk algorithm with Compulsive Evolution for heat exchanger network synthesis, Appl. Therm. Eng. 115(2017)1118-1127. |