[1] H.J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung, M.H. Jin, H.K. Jeong, J.M. Kim, J.Y. Choi, Y.H. Lee, Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance, Adv. Funct. Mater. 19(12)(2009)1987-1992. [2] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y.Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon 45(7)(2007)1558-1565. [3] J. Wu, H. Lin, D.J. Moss, K.P. Loh, B. Jia, Graphene oxide for photonics, electronics and optoelectronics, Nat Rev Chem 7(3)(2023)162-183. [4] V. Agarwal, P.B. Zetterlund, Strategies for reduction of graphene oxide-A comprehensive review, Chem. Eng. J. 405(2021)127018. [5] L. Shen, Z.H. Jin, D. Wang, Y.P. Wang, Y.H. Lu, Enhance wastewater biological treatment through the bacteria induced graphene oxide hydrogel, Chemosphere 190(2018)201-210. [6] G.M. Wang, F. Qian, C.W. Saltikov, Y.Q. Jiao, Y. Li, Microbial reduction of graphene oxide by Shewanella, Nano Res. 4(6)(2011)563-570. [7] S. Gurunathan, J.W. Han, V. Eppakayala, J.H. Kim, Microbial reduction of graphene oxide by Escherichia coli:A green chemistry approach, Colloids Surf. B Biointerfaces 102(2013)772-777. [8] O. Akhavan, E. Ghaderi, Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner, Carbon 50(5)(2012)1853-1860. [9] Q. Xu, X. Lin, L. Gan, G. Owens, Z. Chen, Green reduction of graphene oxide using Bacillus sphaericus, J. Colloid Interface Sci. 605(2022)881-887. [10] Y. Lu, L.R. Zhong, L. Tang, H. Wang, Z.H. Yang, Q.Q. Xie, H.P. Feng, M.Y. Jia, C.Z. Fan, Extracellular electron transfer leading to the biological mediated production of reduced graphene oxide, Chemosphere 256(2020)127141. [11] B.H. Xu, S.H. Cheng, M.Y. Han, Q. Li, W.F. Chen, W.Z. Zhou, The characteristic and performance of reduced graphene oxide by marine bacterium Pseudoalteromonas sp. CF10-13, Ceram. Int. 46(13)(2020)21699-21706. [12] D. Wang, Z.H. Jin, X. Pang, X. Jiang, Y.H. Lu, L. Shen, Fabrication and functionalization of biological graphene aerogel by reusing microorganism in activated sludge and ionic dyes, Chem. Eng. J. 392(2020)124823. [13] L. Shi, H.L. Dong, G. Reguera, H. Beyenal, A.H. Lu, J. Liu, H.Q. Yu, J.K. Fredrickson, Extracellular electron transfer mechanisms between microorganisms and minerals, Nat. Rev. Microbiol. 14(10)(2016)651-662. [14] E.C. Salas, Z.Z. Sun, A. Luttge, J.M. Tour, Reduction of graphene oxide via bacterial respiration, ACS Nano 4(8)(2010)4852-4856. [15] B. Schuetz, M. Schicklberger, J. Kuermann, A. Spormann, J. Gescher, Periplasmic electron transfer via the c-Type cytochromes MtrA and FccA of Shewanella oneidensis MR-1, Appl Environ Microbiol, 75(24)(2009)7789-7796. [16] L. Zou, F. Zhu, Z.E. Long, Y.H. Huang, Bacterial extracellular electron transfer:A powerful route to the green biosynthesis of inorganic nanomaterials for multifunctional applications, J. Nanobiotechnology 19(1)(2021)120. [17] C. Vargas, R. Simarro, J.A. Reina, L.F. Bautista, N. Gonzalez-Benitez, New approach for biological synthesis of reduced graphene oxide, Biochem Eng J. 151(2019):107331. [18] W.H. Xu, Z.H. Jin, X. Pang, Y.B. Zeng, X. Jiang, Y.H. Lu, L. Shen, Interaction between biocompatible graphene oxide and live Shewanella in the self-assembled hydrogel:The role of physicochemical properties, ACS Appl. Bio Mater. 3(7)(2020)4263-4272. [19] J. Ming, D. Sun, J.P. Wei, X.L. Chen, N.F. Zheng, Adhesion of bacteria to a graphene oxide film, ACS Appl. Bio Mater. 3(1)(2020)704-712. [20] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS Nano 4(8)(2010)4806-4814. [21] H.J. Butt, B. Cappella, M. Kappl, Force measurements with the atomic force microscope:Technique, interpretation and applications, Surf. Sci. Rep. 59(1-6)(2005)1-152. [22] F. Alam, S. Kumar, K.M. Varadarajan, Quantification of adhesion force of bacteria on the surface of biomaterials:Techniques and assays, ACS Biomater. Sci. Eng. 5(5)(2019)2093-2110. [23] K.X. Han, Y.B. Zeng, Y.H. Lu, S.J. Meng, Y.Z. Hong, L. Shen, Mechanistic insights into aggregation process of graphene oxide and bacterial cells in microbial reduction of ferrihydrite, Sci. Total Environ. 857(Pt 1)(2023)159321. [24] L. Shi, T.C. Squier, J.M. Zachara, J.K. Fredrickson, Respiration of metal (hydr) oxides by Shewanella and Geobacter:A key role for multihaem c-type cytochromes, Mol. Microbiol. 65(1)(2007)12-20. [25] E.J. O'Loughlin, Effects of electron transfer mediators on the bioreduction of lepidocrocite (gamma-FeOOH) by Shewanella putrefaciens CN3 2, Environ. Sci. Technol. 42(18)(2008)6876-6882. [26] J. Huang, A. Jones, T.D. Waite, Y. Chen, H. Zhang, Fe (II) redox chemistry in the environment, Chem Rev. 121(13)(2021)8161-8233. [27] S. Raveendran, N. Chauhan, Y. Nakajima, H. Toshiaki, S. Kurosu, Y. Tanizawa, R. Tero, Y. Yoshida, T. Hanajiri, T. Maekawa, P.M. Ajayan, A. Sandhu, D.S. Kumar, Ecofriendly route for the synthesis of highly conductive graphene using extremophiles for green electronics and bioscience, Part. Part. Syst. Charact. 30(7)(2013)573-578. [28] L. Liu, C.L. Zhu, M.M. Fan, C.T. Chen, Y. Huang, Q.L. Hao, J.Z. Yang, H.Y. Wang, D.P. Sun, Oxidation and degradation of graphitic materials by naphthalene-degrading bacteria, Nanoscale 7(32)(2015)13619-13628. [29] R. Sharma, J.H. Baik, C.J. Perera, M.S. Strano, Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries, Nano Lett. 10(2)(2010)398-405. [30] X.L. Lu, X.D. Feng, J.R. Werber, C.H. Chu, I. Zucker, J.H. Kim, C.O. Osuji, M. Elimelech, Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets, Proc. Natl. Acad. Sci. USA 114(46)(2017) E9793-E9801. [31] F. Perreault, A.F. de Faria, S. Nejati, M. Elimelech, Antimicrobial properties of graphene oxide nanosheets:Why size matters, ACS Nano 9(7)(2015)7226-7236. [32] J. Chen, Y. Zhang, M. Zhang, B.W. Yao, Y.R. Li, L. Huang, C. Li, G.Q. Shi, Water-enhanced oxidation of graphite to graphene oxide with controlled species of oxygenated groups, Chem. Sci. 7(3)(2016)1874-1881. |