[1] X. Wang, R.Q. Huang, S.Z. Niu, L. Xu, Q.C. Zhang, A. Amini, C. Cheng, Research progress on graphene-based materials for high-performance lithium-metal batteries, N. Carbon Mater. 36(4)(2021)711-728. [2] T. Wei, J.H. Lu, P. Zhang, Q. Zhang, G. Yang, R.Z. Yang, D.F. Chen, Q. Wang, Y.F. Tang, An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity, Chin. Chemical Lett.(2023)109122. [3] J.Y. Wu, T.Y. Zhou, B. Zhong, Q. Wang, W. Liu, H.H. Zhou, Designing anion-derived solid electrolyte interphase in a siloxane-based electrolyte for lithium-metal batteries, ACS Appl. Mater. Interfaces 14(24)(2022)27873-27881. [4] T. Wei, Y.Y. Zhou, C. Sun, L.S. Liu, S.J. Wang, M.T. Wang, Y. Liu, Q. Huang, Q.C. Zhuang, Y.F. Tang, Prestoring lithium into SnO2 coated 3D carbon fiber cloth framework as dendrite-free lithium metal anode, Particuology 84(2024)89-97. [5] H. Huang, D.H. Li, L.F. Hou, H.Y. Du, H. Wei, X.D. Liu, Q. Wang, Y.H. Wei, Advanced protective layer design on the surface of Mg-based metal and application in batteries:challenges and progress, J. Power Sources 542(2022)231755. [6] T. Wei, Y.Y. Zhou, C. Sun, X.T. Guo, S.D. Xu, D.F. Chen, Y.F. Tang, An intermittent lithium deposition model based on CuMn-bimetallic MOF derivatives for composite lithium anode with ultrahigh areal capacity and current densities, Nano Res.(2023), https://doi.org/10.1007/s12274-023-6187-8. [7] X.Y. Yue, C. Ma, J. Bao, S.Y. Yang, D. Chen, X.J. Wu, Y.N. Zhou, Failure mechanisms of lithium metal anode and their advanced characterization technologies, Acta Phys. Chim. Sin. 37(2)(2020)2005012. [8] T. Wei, J.H. Lu, M.T. Wang, C. Sun, Q. Zhang, S.J. Wang, Y.Y. Zhou, D.F. Chen, Y.Q. Lan, MOF-derived materials enabled lithiophilic 3D hosts for lithium metal anode-a review, Chin. J. Chem. 41(15)(2023)1861-1874. [9] T. Wei, J.H. Lu, P. Zhang, G. Yang, C. Sun, Y.Y. Zhou, Q.C. Zhuang, Y.F. Tang, Metal-organic framework-derived Co3O4 modified nickel foam-based dendrite-free anode for robust lithium metal batteries, Chin. Chemical Lett. 34(8)(2023)107947. [10] W.L. Feng, F. Wang, X. Zhou, X. Ji, F.D. Han, C.S. Wang, Stability of interphase between solid state electrolyte and electrode, Acta Phys. Sin. 69(22)(2020)228206. [11] J.Y. Wan, J. Xie, X. Kong, Z. Liu, K. Liu, F.F. Shi, A. Pei, H. Chen, W. Chen, J. Chen, X.K. Zhang, L.Q. Zong, J.Y. Wang, L.Q. Chen, J. Qin, Y. Cui, Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries, Nat. Nanotechnol. 14(7)(2019)705-711. [12] W.Y. Liu, C.J. Yi, L.P. Li, S.L. Liu, Q.Y. Gui, D.L. Ba, Y.Y. Li, D.L. Peng, J.P. Liu, Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries, Angew. Chem. Int. Ed Engl. 60(23)(2021)12931-12940. [13] Z.H. Zhang, T. Wei, J.H. Lu, Q.M. Xiong, Y.H. Ji, Z.Y. Zhu, L.T. Zhang, Practical development and challenges of garnet-structured Li7La3Zr2O12 electrolytes for all-solid-state lithium-ion batteries:a review, Int. J. Miner. Metall. Mater. 28(10)(2021)1565-1583. [14] Q. Yang, a. Wang, J. Luo, W. Tang, Improving ionic conductivity of polymer-based solid electrolytes for lithium metal batteries, Chin. J. Chem. Eng. 43(2022)202-215. [15] Q.Y. Han, S.Q. Wang, W.H. Kong, B. Ji, H.H. Wang, Composite polymer electrolyte reinforced by graphitic carbon nitride nanosheets for room-temperature all-solid-state lithium batteries, Chin. J. Chem. Eng. 54(2023)257-263. [16] T. Wei, Z.M. Wang, Q. Zhang, Y.Y. Zhou, C. Sun, M.T. Wang, Y. Liu, S.J. Wang, Z.D. Yu, X.Y. Qiu, S.D. Xu, S. Qin, Metal-organic framework-based solid-state electrolytes for all solid-state lithium metal batteries:a review, CrystEngComm 24(28)(2022)5014-5030. [17] R. Zhao, Y.X. Wu, Z.B. Liang, L. Gao, W. Xia, Y.S. Zhao, R.Q. Zou, Metal-organic frameworks for solid-state electrolytes, Energy Environ. Sci. 13(8)(2020)2386-2403. [18] T. Wei, Z.H. Zhang, Q. Zhang, J.H. Lu, Q.M. Xiong, F.Y. Wang, X.P. Zhou, W.J. Zhao, X.Y. Qiu, Anion-immobilized solid composite electrolytes based on metal-organic frameworks and superacid ZrO2 fillers for high-performance all solid-state lithium metal batteries, Int. J. Miner. Metall. Mater. 28(10)(2021)1636-1646. [19] T.L. Greaves, C.J. Drummond, Protic ionic liquids:evolving structure-property relationships and expanding applications, Chem. Rev. 115(20)(2015)11379-11448. [20] Y. Yoshida, H. Kitagawa, Ionic conduction in metal-organic frameworks with incorporated ionic liquids, ACS Sustainable Chem. Eng. 7(1)(2019)70-81. [21] J. Hwang, K. Matsumoto, C.Y. Chen, R. Hagiwara, Pseudo-solid-state electrolytes utilizing the ionic liquid family for rechargeable batteries, Energy Environ. Sci. 14(11)(2021)5834-5863. [22] M. Urgoiti-Rodriguez, S. Vaquero-Vilchez, A. Mirandona-Olaeta, R. Fernández de Luis, E. Goikolea, C.M. Costa, S. Lanceros-Mendez, A. Fidalgo-Marijuan, I. Ruiz de Larramendi, Exploring ionic liquid-laden metal-organic framework composite materials as hybrid electrolytes in metal (ion) batteries, Front. Chem. 10(2022)995063. [23] Z.Q. Wang, R. Tan, H.B. Wang, L.Y. Yang, J.T. Hu, H.B. Chen, F. Pan, A metal-organic-framework-based electrolyte with nanowetted interfaces for high-energy-density solid-state lithium battery, Adv. Mater. 30(2)(2018)1704436. [24] Z.E. Liu, Z.W. Hu, X.A. Jiang, X.W. Wang, Z. Li, Z.J. Chen, Y. Zhang, S.G. Zhang, Metal-organic framework confined solvent ionic liquid enables long cycling life quasi-solid-state lithium battery in wide temperature range, Small 18(37)(2022) e2203011. [25] J.H. Lu, Z.M. Wang, Q. Zhang, C. Sun, Y.Y. Zhou, S.J. Wang, X.Y. Qiu, S.D. Xu, R.T. Chen, T. Wei, The effects of amino groups and open metal sites of MOFs on polymer-based electrolytes for all-solid-state lithium metal batteries, Chin. J. Chem. Eng. 60(2023)80-89. [26] T. Wei, Q. Zhang, S.J. Wang, M.T. Wang, Y. Liu, C. Sun, Y.Y. Zhou, Q. Huang, X.Y. Qiu, F. Tian, A gel polymer electrolyte with IL@UiO-66-NH2 as fillers for high-performance all-solid-state lithium metal batteries, Int. J. Miner. Metall. Mater. 30(10)(2023)1897-1905. [27] W.D. Fan, K.Y. Wang, C. Welton, L. Feng, X.K. Wang, X.P. Liu, Y. Li, Z.X. Kang, H.C. Zhou, R.M. Wang, D.F. Sun, Aluminum metal-organic frameworks:from structures to applications, Coord. Chem. Rev. 489(2023)215175. [28] S. Couck, J.F. Denayer, G.V. Baron, T. Remy, J. Gascon, F. Kapteijn, An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4, J. Am. Chem. Soc. 131(18)(2009)6326-6327. [29] X. Tang, S.Y. Lv, K. Jiang, G.H. Zhou, X.M. Liu, Recent development of ionic liquid-based electrolytes in lithium-ion batteries, J. Power Sources 542(2022)231792. [30] M.F. Majid, H.F. Mohd Zaid, C.F. Kait, A. Ahmad, K. Jumbri, Ionic Liquid@Metal-organic framework as a solid electrolyte in a lithium-ion battery:current performance and perspective at molecular level, Nanomaterials 12(7)(2022)1076. [31] Q. Zhang, S.J. Wang, Y. Liu, M.T. Wang, R.T. Chen, Z.Y. Zhu, X.Y. Qiu, S.D. Xu, T. Wei, UiO-66-NH2@67 core-shell metal-organic framework as fillers in solid composite electrolytes for high-performance all-solid-state lithium metal batteries, Energy Technol. 11(4)(2023)2201438. [32] B. Arstad, H. Fjellvåg, K.O. Kongshaug, O. Swang, R. Blom, Amine functionalised metal organic frameworks (MOFs) asadsorbents for carbon dioxide, Adsorption 14(6)(2008)755-762. [33] B. Seoane, C. Tellez, J. Coronas, C. Staudt, NH2-MIL-53(Al) and NH2-MIL-101(Al) in sulfur-containing copolyimide mixed matrix membranes for gas separation, Sep. Purif. Technol. 111(2013)72-81. [34] X.Q. Cheng, A.F. Zhang, K.K. Hou, M. Liu, Y.X. Wang, C.S. Song, G.L. Zhang, X.W. Guo, Size-and morphology-controlled NH2-MIL-53(Al) prepared in DMF-water mixed solvents, Dalton Trans. 42(37)(2013)13698-13705. [35] H.F. Xiang, B. Yin, H. Wang, H.W. Lin, X.W. Ge, S. Xie, C.H. Chen, Improving electrochemical properties of room temperature ionic liquid (RTIL) based electrolyte for Li-ion batteries, Electrochim. Acta 55(18)(2010)5204-5209. [36] Y.F. Fan, C. Li, X.S. Zhang, X.M. Yang, X.Y. Su, H.M. Ye, N.W. Li, Troger's base mixed matrix membranes for gas separation incorporating NH2-MIL-53(Al) nanocrystals, J. Membr. Sci. 573(2019)359-369. [37] T. Lu, L.C. Zhang, M.X. Sun, D.Y. Deng, Y.Y. Su, Y. Lv, Amino-functionalized metal-organic frameworks nanoplates-based energy transfer probe for highly selective fluorescence detection of free chlorine, Anal. Chem. 88(6)(2016)3413-3420. [38] Y.Y. Qin, Q.Y. Wang, J.L. Ge, F. Wu, Microwave ultrasound-assisted synthesis of NH2-MIL-53(Al) for fluorescence detection of organosulfur compounds in model fuel, Inorg. Chem. Commun. 132(2021)108828. [39] T. Van Tran, A.A. Jalil, D.T.C. Nguyen, M. Alhassan, W. Nabgan, A.N.T. Cao, T.M. Nguyen, D.V N. Vo, A critical review on the synthesis of NH2-MIL-53(Al) based materials for detection and removal of hazardous pollutants, Environ. Res. 216(2023)114422. [40] L.B. Li, J.S. Li, S. Yang, S.W. Guo, P.X. Yang, Gel polymer electrolytes containing ionic liquids prepared by radical polymerization, Colloids Surf. A Physicochem. Eng. Aspects 459(2014)136-141. [41] P.X. Yang, L. Liu, J. Hou, J.Q. Zhang, Electrochemical properties of PP13TFSI-LiTFSI-P (VdF-HFP) ionic liquid gel polymer electrolytes, Chin. J. Chem. Phys. 26(4)(2013)439-444. [42] W. Xiao, X.H. Li, Z.X. Wang, H.J. Guo, Y. Li, B. Yang, Performance of PVDF-HFP-based gel polymer electrolytes with different pore forming agents, Iran. Polym. J. 21(11)(2012)755-761. [43] T. Wei, Z.M. Wang, M. Zhang, Q. Zhang, J.H. Lu, Y.Y. Zhou, C. Sun, Z.D. Yu, Y. Wang, M. Qiao, S. Qin, Activated metal-organic frameworks (a-MIL-100(Fe)) as fillers in polymer electrolyte for high-performance all-solid-state lithium metal batteries, Mater. Today Commun. 31(2022)103518. [44] N. Chen, Y. Xing, L.L. Wang, F. Liu, L. Li, R.J. Chen, F. Wu, S.J. Guo, "Tai Chi" philosophy driven rigid-flexible hybrid ionogel electrolyte for high-performance lithium battery, Nano Energy 47(2018)35-42. [45] J.F. Wu, X. Guo, Nanostructured metal-organic framework (MOF)-derived solid electrolytes realizing fast lithium ion transportation kinetics in solid-state batteries, Small 15(5)(2019) e1804413. [46] M.M. Noor, M.A. Careem, S.R. Majid, A.K. Arof, Characterisation of plasticised PVDF-HFP polymer electrolytes, Mater. Res. Innov. 15(sup2)(2011) s157-s160. [47] T. Wei, Z.H. Zhang, Z.M. Wang, Q. Zhang, Y.S. Ye, J.H. Lu, Z.U. Rahman, Z.W. Zhang, Ultrathin solid composite electrolyte based on Li6.4La3Zr1.4Ta0.6O12/PVDF-HFP/LiTFSI/succinonitrile for high-performance solid-state lithium metal batteries, ACS Appl. Energy Mater. 3(9)(2020)9428-9435. [48] Y.H. Ding, C. Zhang, H. Zheng, Y. Han, Zeolitic imidazolate framework-8 modified poly (vinylidene fluoride-co-hexafluoropropylene)/polyacrylonitrile composite separators for Li-ion batteries, Chin. J. Chem. Eng. 62(2023)291-296. [49] W.Q. Zhang, J.H. Nie, F. Li, Z.L. Wang, C.W. Sun, A durable and safe solid-state lithium battery with a hybrid electrolyte membrane, Nano Energy 45(2018)413-419. [50] K. Fujie, K. Otsubo, R. Ikeda, T. Yamada, H. Kitagawa, Low temperature ionic conductor:ionic liquid incorporated within a metal-organic framework, Chem. Sci. 6(7)(2015)4306-4310. [51] Z.W. Lei, J.L. Shen, J. Wang, Q. Qiu, G.Z. Zhang, S.S. Chi, H.L. Xu, S. Li, W.D. Zhang, Y.S. Zhao, Y.H. Deng, C.Y. Wang, Composite polymer electrolytes with uniform distribution of ionic liquid-grafted ZIF-90 nanofillers for high-performance solid-state Li batteries, Chem. Eng. J. 412(2021)128733. [52] Z.D. Wu, Y.K. Yi, F. Hai, X.L. Tian, S.T. Zheng, J.Y. Guo, W. Tang, W.B. Hua, M.T. Li, A metal-organic framework based quasi-solid-state electrolyte enabling continuous ion transport for high-safety and high-energy-density lithium metal batteries, ACS Appl. Mater. Interfaces 15(18)(2023)22065-22074. [53] L.Y. Chen, K. Ding, K. Li, Z.L. Li, X.L. Zhang, Q.F. Zheng, Y.P. Cai, Y.Q. Lan, Crystalline porous materials-based solid-state electrolytes for lithium metal batteries, EnergyChem 4(3)(2022)100073. [54] Z.Q. Wang, Z.J. Wang, L.Y. Yang, H.B. Wang, Y.L. Song, L. Han, K. Yang, J.T. Hu, H.B. Chen, F. Pan, Boosting interfacial Li+ transport with a MOF-based ionic conductor for solid-state batteries, Nano Energy 49(2018)580-587. [55] Q. Zhang, T. Wei, J.H. Lu, C. Sun, Y.Y. Zhou, M.T. Wang, Y. Liu, B.B. Xiao, X.Y. Qiu, S.D. Xu, The effects of PVB additives in MOFs-based solid composite electrolytes for all-solid-state lithium metal batteries, J. Electroanal. Chem. 926(2022)116935. [56] T. Zhou, Y. Zhao, J.W. Choi, A. Coskun, Ionic liquid functionalized gel polymer electrolytes for stable lithium metal batteries, Angew. Chem. Int. Ed Engl. 60(42)(2021)22791-22796. [57] Z.N. Wang, S. Wang, A.L. Wang, X. Liu, J. Chen, Q.H. Zeng, L. Zhang, W. Liu, L.Y. Zhang, Covalently linked metal-organic framework (MOF)-polymer all-solid-state electrolyte membranes for room temperature high performance lithium batteries, J. Mater. Chem. A 6(35)(2018)17227-17234. [58] Q.Y. Han, S.Q. Wang, Z.Y. Jiang, X.C. Hu, H.H. Wang, Composite polymer electrolyte incorporating metal-organic framework nanosheets with improved electrochemical stability for all-solid-state Li metal batteries, ACS Appl. Mater. Interfaces 12(18)(2020)20514-20521. |