中国化学工程学报 ›› 2024, Vol. 72 ›› Issue (8): 226-244.DOI: 10.1016/j.cjche.2024.05.022
• • 上一篇
Feng Chen1, Haoyu Li1, Xianyan Qiao1, Ruoyang Wang1, Changyan Hu1, Ting Chen2, Yifan Niu3, Benhe Zhong1, Zhenguo Wu1, Xiaodong Guo1
收稿日期:
2023-12-06
修回日期:
2024-03-29
出版日期:
2024-08-28
发布日期:
2024-10-17
通讯作者:
Zhenguo Wu,E-mail:zhenguowu@scu.edu.cn;Xiaodong Guo,E-mail:xiaodong2009@scu.edu.cn
基金资助:
Feng Chen1, Haoyu Li1, Xianyan Qiao1, Ruoyang Wang1, Changyan Hu1, Ting Chen2, Yifan Niu3, Benhe Zhong1, Zhenguo Wu1, Xiaodong Guo1
Received:
2023-12-06
Revised:
2024-03-29
Online:
2024-08-28
Published:
2024-10-17
Contact:
Zhenguo Wu,E-mail:zhenguowu@scu.edu.cn;Xiaodong Guo,E-mail:xiaodong2009@scu.edu.cn
Supported by:
摘要: Supporting sustainable green energy systems, there is a big demand gap for grid energy storage. Sodium-ion storage, especially sodium-ion batteries (SIBs), have advanced significantly and are now emerging as a feasible alternative to the lithium-ion batteries equivalent in large-scale energy storage due to their natural abundance and prospective inexpensive cost. Among various anode materials of SIBs, beneficial properties, such as outstanding stability, great abundance, and environmental friendliness, make sodium titanates (NTOs), one of the most promising anode materials for the rechargeable SIBs. Nevertheless, there are still enormous challenges in application of NTO, owing to its low intrinsic electronic conductivity and collapse of structure. The research on NTOs is still in its infancy; there are few conclusive reviews about the specific function of various modification methods. Herein, we summarize the typical strategies of optimization and analysis the fine structures and fabrication methods of NTO anodes combined with the application of in situ characterization techniques. Our work provides effective guidance for promoting the continuous development, equipping NTOs in safety-critical systems, and lays a foundation for the development of NTO-anode materials in SIBs.
Feng Chen, Haoyu Li, Xianyan Qiao, Ruoyang Wang, Changyan Hu, Ting Chen, Yifan Niu, Benhe Zhong, Zhenguo Wu, Xiaodong Guo. The chance of sodium titanate anode for the practical sodium-ion batteries[J]. 中国化学工程学报, 2024, 72(8): 226-244.
Feng Chen, Haoyu Li, Xianyan Qiao, Ruoyang Wang, Changyan Hu, Ting Chen, Yifan Niu, Benhe Zhong, Zhenguo Wu, Xiaodong Guo. The chance of sodium titanate anode for the practical sodium-ion batteries[J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 226-244.
[1] Y.K. Zhou, Transition towards carbon-neutral districts based on storage techniques and spatiotemporal energy sharing with electrification and hydrogenation, Renew. Sustain. Energy Rev. 162 (2022) 112444. [2] A. Khosravani, E. Safaei, M. Reynolds, K.E. Kelly, K.M. Powell, Challenges of reaching high renewable fractions in hybrid renewable energy systems, Energy Rep. 9 (2023) 1000-1017. [3] X.D. Gao, X.Y. Zhang, X.Y. Liu, Y.F. Tian, Q.Y. Cai, M. Jia, X.H. Yan, Recent advances for high-entropy based layered cathodes for sodium ion batteries, Small Methods 7 (9) (2023) e2300152. [4] Y.J. Xu, D. Bauer, M. Lubke, T.E. Ashton, Y. Zong, J.A. Darr, High-power sodium titanate anodes; a comparison of lithium vs sodium-ion batteries, J. Power Sources 408 (2018) 28-37. [5] E. de la Llave, V. Borgel, K.J. Park, J.Y. Hwang, Y.K. Sun, P. Hartmann, F.F. Chesneau, D. Aurbach, Comparison between Na-ion and Li-ion cells: understanding the critical role of the cathodes stability and the anodes pretreatment on the cells behavior, ACS Appl. Mater. Interfaces 8 (3) (2016) 1867-1875. [6] D.A. Stevens, J.R. Dahn, High capacity anode materials for rechargeable sodium-ion batteries, J. Electrochem. Soc. 147 (4) (2000) 1271. [7] L. Joncourt, M. Mermoux, P. Touzain, L. Bonnetain, D. Dumas, B. Allard, Sodium reactivity with carbons, J. Phys. Chem. Solids 57 (6-8) (1996) 877-882. [8] S.F. Lou, Y. Zhao, J.J. Wang, G.P. Yin, C.Y. Du, X.L. Sun, Ti-based oxide anode materials for advanced electrochemical energy storage: lithium/sodium ion batteries and hybrid pseudocapacitors, Small 15 (52) (2019) e1904740. [9] Y.N. Mei, Y.H. Huang, X.L. Hu, Nanostructured Ti-based anode materials for Na-ion batteries, J. Mater. Chem. A 4 (31) (2016) 12001-12013. [10] S.Y. Dong, N. Lv, Y.L. Wu, Y.Z. Zhang, G.Y. Zhu, X.C. Dong, Titanates for sodium-ion storage, Nano Today 42 (2022) 101349. [11] C.B. Zhu, R.E. Usiskin, Y. Yu, J. Maier, The nanoscale circuitry of battery electrodes, Science 358 (6369) (2017) eaao2808. [12] B. Babu, P. Simon, A. Balducci, Fast charging materials for high power applications, Adv. Energy Mater. 10 (29) (2020) 2001128. [13] Q.H. Huang, Y.L. Wang, Q. Zhang, G.Q. Xiang, X.Y. Han, Y.K. Yang, Polyimide-engineered sodium titanate anode for sodium storage with improved structure and interface stability, Chem. Eng. J. 467 (2023) 143356. [14] Z.H. Li, W. Shen, C. Wang, Q.J. Xu, H.M. Liu, Y.G. Wang, Y.Y. Xia, Ultra-long Na2Ti3O7 nanowires@carbon cloth as a binder-free flexible electrode with a large capacity and long lifetime for sodium-ion batteries, J. Mater. Chem. A 4 (43) (2016) 17111-17120. [15] F.X. Xie, L. Zhang, D.W. Su, M. Jaroniec, S.Z. Qiao, Na2Ti3O7@N-doped carbon hollow spheres for sodium-ion batteries with excellent rate performance, Adv. Mater. 29 (24) (2017) 1700989. [16] X.M. Lin, X.T. Yang, H.N. Chen, Y.L. Deng, W.H. Chen, J.C. Dong, Y.M. Wei, J.F. Li, In situ characterizations of advanced electrode materials for sodium-ion batteries toward high electrochemical performances, J. Energy Chem. 76 (2023) 146-164. [17] B.A. Song, Y. Yang, T.T. Yang, K. He, X.B. Hu, Y.F. Yuan, V.P. Dravid, M.R. Zachariah, W.A. Saidi, Y.Z. Liu, R. Shahbazian-Yassar, Revealing high-temperature reduction dynamics of high-entropy alloy nanoparticles via in situ transmission electron microscopy, Nano Lett. 21 (4) (2021) 1742-1748. [18] Y.Y. Zhang, Z.L. Jiang, J.Y. Huang, L.Y. Lim, W.L. Li, J.Y. Deng, D.G. Gong, Y.X. Tang, Y.K. Lai, Z. Chen, Titanate and titania nanostructured materials for environmental and energy applications: a review, RSC Adv. 5 (97) (2015) 79479-79510. [19] V. Aravindan, Y.S. Lee, R. Yazami, S. Madhavi, TiO2 polymorphs in ‘rocking-chair’ Li-ion batteries, Mater. Today 18 (6) (2015) 345-351. [20] Z.D. Diao, Y.Q. Wang, D.M. Zhao, X.P. Zhang, S.S. Mao, S.H. Shen, Ultra-small TiO2 nanoparticles embedded in carbon nanosheets for high-performance sodium storage, Chem. Eng. J. 417 (2021) 127928. [21] P. Xue, Q.L. Li, W.B. Gong, Z.T. Sun, H. Wang, K.P. Zhu, C. Guo, G. Hong, W.G. Xu, J.Y. Sun, Y.G. Yao, Z.F. Liu, Structure-induced partial phase transformation endows hollow TiO2/TiN heterostructure fibers stacked with nanosheet arrays with extraordinary sodium storage performance, J. Mater. Chem. A 9 (20) (2021) 12109-12118. [22] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Formation of titanium oxide nanotube, Langmuir 14 (12) (1998) 3160-3163. [23] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Titania nanotubes prepared by chemical processing, Adv. Mater. 11 (15) (1999) 1307-1311. [24] G.H. Du, Q. Chen, R.C. Che, Z.Y. Yuan, L.M. Peng, Preparation and structure analysis of titanium oxide nanotubes, Appl. Phys. Lett. 79 (22) (2001) 3702-3704. [25] T.J. Barr, G.J. Meyer, Evidence for first-order charge recombination in dye-sensitized solar cells, ACS Energy Lett. 2 (10) (2017) 2335-2340. [26] R. Acharya, K. Parida, A review on TiO2/g-C3N4 visible-light- responsive photocatalysts for sustainable energy generation and environmental remediation, J. Environ. Chem. Eng. 8 (4) (2020) 103896. [27] K. Kaviyarasu, N. Geetha, K. Kanimozhi, C. Maria Magdalane, S. Sivaranjani, A. Ayeshamariam, J. Kennedy, M. Maaza, In vitro cytotoxicity effect and antibacterial performance of human lung epithelial cells A549 activity of Zinc oxide doped TiO2 nanocrystals: investigation of bio-medical application by chemical method, Mater. Sci. Eng. C 74 (2017) 325-333. [28] Z.W. Liu, W.F. Zhang, Z.W. Zhou, X.J. Liu, H. Zhang, M.D. Wei, Hierarchical porous anatase TiO2 microspheres with high-rate and long-term cycling stability for sodium storage in ether-based electrolyte, ACS Appl. Energy Mater. 3 (4) (2020) 3619-3627. [29] J.F. Ni, S.D. Fu, Y.F. Yuan, L. Ma, Y. Jiang, L. Li, J. Lu, Boosting sodium storage in TiO2 nanotube arrays through surface phosphorylation, Adv. Mater. 30 (6) (2018) 1704337. [30] H.F. Zhai, B.Y. Xia, H.S. Park, Ti-based electrode materials for electrochemical sodium ion storage and removal, J. Mater. Chem. A 7 (39) (2019) 22163-22188. [31] D.H. Lee, B.H. Lee, A.K. Sinha, J.H. Park, M.S. Kim, J. Park, H. Shin, K.S. Lee, Y.E. Sung, T. Hyeon, Engineering titanium dioxide nanostructures for enhanced lithium-ion storage, J. Am. Chem. Soc. 140 (48) (2018) 16676-16684. [32] Z. Hu, Z.X. Tai, Q.N. Liu, S.W. Wang, H.L. Jin, S. Wang, W.H. Lai, M.Z. Chen, L. Li, L.N. Chen, Z.L. Tao, S.L. Chou, Ultrathin 2D TiS2 nanosheets for high capacity and long-life sodium ion batteries, Adv. Energy Mater. 9 (8) (2019) 1803210. [33] M.G. Wu, W. Ni, J. Hu, J.M. Ma, NASICON-structured NaTi2(PO4)3 for sustainable energy storage, Nano Micro Lett. 11 (1) (2019) 44. [34] C.L. Zhang, X. Wang, W. Wei, X.C. Hu, Y.L. Wu, N. Lv, S.Y. Dong, L.F. Shen, Recent advances in the synthesis and energy applications of 2D MXenes, ChemElectroChem 8 (20) (2021) 3804-3826. [35] L.Z. Wang, T. Sasaki, Titanium oxide nanosheets: graphene analogues with versatile functionalities, Chem. Rev. 114 (19) (2014) 9455-9486. [36] M. Ogawa, K. Saito, M. Sohmiya, A controlled spatial distribution of functional units in the two dimensional nanospace of layered silicates and titanates, Dalton Trans. 43 (27) (2014) 10340-10354. [37] Y. Ide, M. Sadakane, T. Sano, M. Ogawa, Functionalization of layered titanates, J. Nanosci. Nanotechnol. 14 (3) (2014) 2135-2147. [38] I.Y. Kim, Y.K. Jo, J.M. Lee, L. Wang, S.J. Hwang, Unique advantages of exfoliated 2D nanosheets for tailoring the functionalities of nanocomposites, J. Phys. Chem. Lett. 5 (23) (2014) 4149-4161. [39] A.K. Haridas, C.S. Sharma, T.N. Rao, Donut-shaped Li4Ti5O12 structures as a high performance anode material for lithium ion batteries, Small 11 (3) (2015) 290-294. [40] J.S. Ko, V.V.T. Doan-Nguyen, H.S. Kim, G.A. Muller, A.C. Serino, P.S. Weiss, B.S. Dunn, Na2Ti3O7 nanoplatelets and nanosheets derived from a modified exfoliation process for use as a high-capacity sodium-ion negative electrode, ACS Appl. Mater. Interfaces 9 (2) (2017) 1416-1425. [41] P. Senguttuvan, G. Rousse, V. Seznec, J.M. Tarascon, M.R. Palacin, Na2Ti3O7: lowest voltage ever reported oxide insertion electrode for sodium ion batteries, Chem. Mater. 23 (18) (2011) 4109-4111. [42] S.H. Woo, Y. Park, W.Y. Choi, N.S. Choi, S. Nam, B. Park, K.T. Lee, Trigonal Na4Ti5O12 Phase as an intercalation host for rechargeable batteries, J. Electrochem. Soc. 159 (12) (2012) A2016-A2023. [43] W. Schmidt, P. Bottke, M. Sternad, P. Gollob, V. Hennige, M. Wilkening, Small change-great effect: steep increase of Li ion dynamics in Li4Ti5O12 at the early stages of chemical Li insertion, Chem. Mater. 27 (5) (2015) 1740-1750. [44] T.F. Yi, Y. Xie, Y.R. Zhu, R.S. Zhu, H.Y. Shen, Structural and thermodynamic stability of Li4Ti5O12 anode material for lithium-ion battery, J. Power Sources 222 (2013) 448-454. [45] T.F. Yi, H.P. Liu, Y.R. Zhu, L.J. Jiang, Y. Xie, R.S. Zhu, Improving the high rate performance of Li4Ti5O12 through divalent zinc substitution, J. Power Sources 215 (2012) 258-265. [46] S. Andersson, A.D. Wadsley, The crystal structure of Na2Ti3O7, Acta Crystallogr. 14 (12) (1961) 1245-1249. [47] M. Dion, Y. Piffard, M. Tournoux, The tetratitanates M2Ti4O9 (M=li, na, K, rb, cs, tl, ag), J. Inorg. Nucl. Chem. 40 (5) (1978) 917-918. [48] S. Andersson, A.D. Wadsley, The structures of Na2Ti6O13 and Rb2Ti6O13 and the alkali metal titanates, Acta Crystallogr. 15 (3) (1962) 194-201. [49] K.L. Berry, V.D. Aftandilian, W.W. Gilbert, E.P.H. Meibohm, H.S. Young, Potassium tetra- and hexatitanates, J. Inorg. Nucl. Chem. 14 (3-4) (1960) 231-239. [50] H. Izawa, S. Kikkawa, M. Koizumi, Ion exchange and dehydration of layered[sodium and potassium]titanates, Na2Ti3O7 and K2Ti4O9, J. Phys. Chem. 86 (25) (1982) 5023-5026. [51] S.H. Guo, J. Yi, Y. Sun, H.S. Zhou, Recent advances in titanium-based electrode materials for stationary sodium-ion batteries, Energy Environ. Sci. 9 (10) (2016) 2978-3006. [52] B.T. Zhao, R. Ran, M.L. Liu, Z.P. Shao, A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: the latest advancements and future perspectives, Mater. Sci. Eng. R Rep. 98 (2015) 1-71. [53] W. Zhang, D.H. Seo, T.N. Chen, L.J. Wu, M. Topsakal, Y.M. Zhu, D.Y. Lu, G. Ceder, F. Wang, Kinetic pathways of ionic transport in fast-charging lithium titanate, Science 367 (6481) (2020) 1030-1034. [54] Y. Sun, L. Zhao, H.L. Pan, X. Lu, L. Gu, Y.S. Hu, H. Li, M. Armand, Y. Ikuhara, L.Q. Chen, X.J. Huang, Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries, Nat. Commun. 4 (2013) 1870. [55] C.J. Wu, W.B. Hua, Z. Zhang, B.H. Zhong, Z.G. Yang, G.L. Feng, W. Xiang, Z.G. Wu, X.D. Guo, Design and synthesis of layered Na2Ti3O7 and tunnel Na2Ti6O13 hybrid structures with enhanced electrochemical behavior for sodium-ion batteries, Adv. Sci. 5 (9) (2018) 1800519. [56] S.D. Fu, J.F. Ni, Y. Xu, Q. Zhang, L. Li, Hydrogenation driven conductive Na2Ti3O7 nanoarrays as robust binder-free anodes for sodium-ion batteries, Nano Lett. 16 (7) (2016) 4544-4551. [57] K. Shen, M. Wagemaker, Na2+XTi6O13 as potential negative electrode material for Na-ion batteries, Inorg. Chem. 53 (16) (2014) 8250-8256. [58] M.M. Doeff, J. Cabana, M. Shirpour, Titanate anodes for sodium ion batteries, J. Inorg. Organomet. Polym. Mater. 24 (1) (2014) 5-14. [59] S. Chen, Y.C. Pang, J. Liang, S.J. Ding, Red blood cell-like hollow carbon sphere anchored ultrathin Na2Ti3O7 nanosheets as long cycling and high rate-performance anodes for sodium-ion batteries, J. Mater. Chem. A 6 (27) (2018) 13164-13170. [60] C. Piffet, N. Eshraghi, G. Mottet, F. Hatert, J. Swiatowska, R. Cloots, F. Boschini, A. Mahmoud, Effect of the calcination duration on the electrochemical properties of Na2Ti3O7 as anode material for Na-ion batteries, Batteries 9 (10) (2023) 495. [61] C.J. Wu, Z. Zhang, Y. Tang, Z.G. Yang, Y.C. Li, B.H. Zhong, Z.G. Wu, X.D. Guo, S.X. Dou, Three-dimensional chestnut-like architecture assembled from NaTi3O6(OH)·2H2O@N-doped carbon nanosheets with enhanced sodium storage properties, ACS Appl. Mater. Interfaces 10 (50) (2018) 43740-43748. [62] W. Zou, C. Fan, J.Z. Li, Sodium titanate/carbon (Na2Ti3O7/C) nanofibers via electrospinning technique as the anode of sodium-ion batteries, Chin. J. Chem. 35 (1) (2017) 79-85. [63] M. Zarrabeitia, E. Castillo-Martinez, J.M. Lopez Del Amo, A. Eguia-Barrio, M.A. Munoz-Marquez, T. Rojo, M. Casas-Cabanas, Identification of the critical synthesis parameters for enhanced cycling stability of Na-ion anode material Na2Ti3O7, Acta Mater. 104 (2016) 125-130. [64] J. Yang, D. Li, X. Wang, X.J. Yang, L.D. Lu, Study on the synthesis and ion-exchange properties of layered titanate Na2Ti3O7 powders with different sizes, J. Mater. Sci. 38 (13) (2003) 2907-2911. [65] Q. Chen, G.H. Du, S. Zhang, L.-M Peng, The structure of trititanate nanotubes, Acta Crystallogr. B 58 (Pt 4) (2002) 587-593. [66] D. Bavykin, J. Friedrich, F. Walsh, Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications, Adv. Mater. 18 (21) (2006) 2807-2824. [67] P. Kumari, Y.N. Li, R. Boston, An ionic liquid synthesis route for mixed-phase sodium titanate (Na2Ti3O7 and Na2Ti6O13) rods as an anode for sodium-ion batteries, Nanoscale 15 (28) (2023) 12087-12094. [68] Z.M. Zhou, H.M. Xiao, F. Zhang, X.L. Zhang, Y.B. Tang, Solvothermal synthesis of Na2Ti3O7 nanowires embedded in 3D graphene networks as an anode for high-performance sodium-ion batteries, Electrochim. Acta 211 (2016) 430-436. [69] D.V. Bavykin, F.C. Walsh, Elongated titanate nanostructures and their applications, Eur. J. Inorg. Chem. 2009 (8) (2009) 977-997. [70] S. Chen, L. Gao, L.L. Zhang, X.L. Yang, Mesoporous Na2Ti3O7 microspheres with rigid framework as anode materials for high-performance sodium ion batteries, Ionics 25 (5) (2019) 2211-2219. [71] D.L. Morgan, H.Y. Zhu, R.L. Frost, E.R. Waclawik, Determination of a morphological phase diagram of titania/titanate nanostructures from alkaline hydrothermal treatment of degussa P25, Chem. Mater. 20 (12) (2008) 3800-3802. [72] D.V. Bavykin, B.A. Cressey, M.E. Light, F.C. Walsh, An aqueous, alkaline route to titanate nanotubes under atmospheric pressure conditions, Nanotechnology 19 (27) (2008) 275604. [73] S. Zhang, L.M. Peng, Q. Chen, G.H. Du, G. Dawson, W.Z. Zhou, Formation mechanism of H2Ti3O7 nanotubes, Phys. Rev. Lett. 91 (25) (2003) 256103. [74] D.V. Bavykin, V.N. Parmon, A.A. Lapkin, F.C. Walsh, The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes, J. Mater. Chem. 14 (22) (2004) 3370-3377. [75] Y. Leyet, F. Guerrero, J. Anglada-Rivera, R.F.B. de Souza, W.R. Brito, L. Aguilera, L.A. Pocrifka, R. Pena-Garcia, E. Padron-Hernandez, J. de la Cruz Perez, Synthesis of Na2Ti3O7 nanoparticles by sonochemical method for solid state electrolyte applications, J. Solid State Electrochem. 22 (5) (2018) 1315-1319. [76] X.J. Yuan, W.L. Li, X.J. Liu, Comparative study of proton exchange in tri- and hexatitanates: correlations between stability and electronic properties, Inorg. Chem. 61 (9) (2022) 3918-3930. [77] H.L. Pan, X. Lu, X.Q. Yu, Y.S. Hu, H. Li, X.Q. Yang, L.Q. Chen, Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries, Adv. Energy Mater. 3 (9) (2013) 1186-1194. [78] Y. Li, Y.H. Liu, D. Wang, C.Y. Hu, K.Y. Luo, B.H. Zhong, Y. Sun, Y. Liu, Z.G. Wu, X.D. Guo, Enabling both ultrahigh initial coulombic efficiency and superior stability of Na2Ti3O7anodes by optimizing binders, J. Mater. Chem. A 10 (45) (2022) 24178-24189. [79] W.J. Meng, Z.Z. Dang, D.S. Li, L. Jiang, Long-cycle-life sodium-ion battery fabrication via a unique chemical bonding interface mechanism, Adv. Mater. 35 (30) (2023) e2301376. [80] D.S. Liu, F. Jin, A. Huang, X. Sun, H. Su, Y. Yang, Y. Zhang, X. Rui, H. Geng, C.C. Li, Phosphorus-doping-induced surface vacancies of 3D Na2Ti3O7 nanowire arrays enabling high-rate and long-life sodium storage, Chemistry 25 (65) (2019) 14881-14889. [81] N.D. Trinh, O. Crosnier, S.B. Schougaard, T. Brousse, Synthesis, characterization and electrochemical studies of active materials for sodium ion batteries, ECS Trans. 35 (32) (2011) 91-98. [82] A. Rudola, K. Saravanan, S. Devaraj, H. Gong, P. Balaya, Na2Ti6O13: a potential anode for grid-storage sodium-ion batteries, Chem. Commun. Camb. Engl. 49 (67) (2013) 7451-7453. [83] Z.H. Chen, Q.X. Zhang, L. Lu, X.Y. Chen, S. Wang, C.Z. Xin, B.L. Xing, C.X. Zhang, Enhanced cycle stability of Na2Ti3O7 nanosheets grown in situ on nickel foam as an anode for sodium-ion batteries, Energy Fuels 34 (3) (2020) 3901-3908. [84] D.P. Opra, A.I. Neumoin, S.L. Sinebryukhov, A.B. Podgorbunsky, V.G. Kuryavyi, V.Y. Mayorov, A.Y. Ustinov, S.V. Gnedenkov, Moss-like hierarchical architecture self-assembled by ultrathin Na2Ti3O7 nanotubes: synthesis, electrical conductivity, and electrochemical performance in sodium-ion batteries, Nanomaterials 12 (11) (2022) 1905. [85] C.J. Wu, C.G. Shi, L. Yang, Z. Zhang, Y. Tang, Z.G. Yang, R.K. Yang, Z.G. Wu, X.D. Guo, L. Huang, B.H. Zhong, In operando investigation of the structural evolution during calcination and corresponding enhanced performance of three-dimensional Na2Ti6O13@C-N hierarchical microflowers, Ind. Eng. Chem. Res. 57 (51) (2018) 17430-17436. [86] L.F. Que, F.D. Yu, L.L. Zheng, Z.B. Wang, D.M. Gu, Tuning lattice spacing in titanate nanowire arrays for enhanced sodium storage and long-term stability, Nano Energy 45 (2018) 337-345. [87] S. Chandel, Zulkifli, J. Singh, J. Kim, A.K. Rai, Reduced graphene oxide (rGO) integrated sodium titanate nanocomposite as a high-rate performance anode material for sodium ion batteries, J. Electroanal. Chem. 939 (2023) 117485. [88] D.L. Ba, W.H. Zhu, Y.Y. Li, J.P. Liu, Synergistically enhancing cycleability and rate performance of sodium titanate nanowire anode via hydrogenation and carbon coating for advanced sodium ion batteries, Rare Met. 41 (12) (2022) 4075-4085. [89] M.R. Panda, A.R. Kathribail, B. Modak, S. Sau, D.P. Dutta, S. Mitra, Electrochemical properties of biomass-derived carbon and its composite along with Na2Ti3O7 as potential high-performance anodes for Na-ion and Li-ion batteries, Electrochim. Acta 392 (2021) 139026. [90] Z.H. Li, Y.X. Huang, Y. Jiang, Z.H. Wang, B.P. Lu, J.H. Zhou, M. Xie, Dense sandwich-like Na2Ti3O7@rGO composite with superior performance for sodium storage, ChemElectroChem 7 (10) (2020) 2258-2264. [91] Y.K. Tang, L. Liu, Y. Zhang, H.Y. Zhao, L.B. Kong, S.S. Gao, Confined Formation of monoclinic Na4Ti5O12 nanoparticles embedded into porous CNTs: towards enhanced electrochemical performances for sodium ion batteries, New J. Chem. 42 (24) (2018) 19340-19343. [92] X.B. Zhong, F. Gao, C. He, P. Radjenovic, Z.Q. Tian, J.F. Li, Ultrahigh-rate-performance hierarchical structured Na2Ti2O5@RGO sodium-ion batteries and revealing the storage mechanism using in situ Raman spectroscopy, J. Phys. Chem. C 124 (20) (2020) 10845-10851. [93] H. Li, H.L. Fei, X. Liu, J. Yang, M.D. Wei, In situ synthesis of Na2Ti7O15 nanotubes on a Ti net substrate as a high performance anode for Na-ion batteries, Chem. Commun. 51 (45) (2015) 9298-9300. [94] S.H. Choe, C.J. Yu, K.C. Ri, J.S. Kim, U.G. Jong, Y.H. Kye, S.N. Hong, First-principles study of NaxTiO2 with trigonal bipyramid structures: an insight into sodium-ion battery anode applications, Phys. Chem. Chem. Phys. 21 (16) (2019) 8408-8417. [95] S.Y. Dong, Y.L. Xu, L.Y. Wu, H. Dou, X.G. Zhang, Surface-functionalized graphene-based quasi-solid-state Na-ion hybrid capacitors with excellent performance, Energy Storage Mater. 11 (2018) 8-15. [96] J.H. Zuo, Z.Y. Liu, H.N. Jiang, Q. Chen, Z.L. Yang, X.K. Gu, Y.Y. Jiao, Y.J. Gong, Sodium titanate nanowires for Na+-based hybrid energy storage with high power density, SusMat 2 (6) (2022) 720-730. [97] X. Yan, D.Y. Sun, J.C. Jiang, W.C. Yan, Y.C. Jin, Self-assembled twine-like Na2Ti3O7 nanostructure as advanced anode for sodium-ion batteries, J. Alloys Compd. 697 (2017) 208-214. [98] Y. Liu, Z.J. Wang, L. Gao, L.L. Zhang, X.L. Yang, Na2Ti3O7 nanosheet arrays as anode for high performance dual ion batteries, Mater. Lett. 291 (2021) 129602. [99] J. Ni, S. Fu, C. Wu, Y. Zhao, J. Maier, Y. Yu, L. Li, Superior sodium storage in Na2Ti3O7 nanotube arrays through surface engineering, Adv. Energy Mater., 6 (2016). [100] Y. Liu, F.F. Fan, J.W. Wang, Y. Liu, H.L. Chen, K.L. Jungjohann, Y.H. Xu, Y.J. Zhu, D. Bigio, T. Zhu, C.S. Wang, In situ transmission electron microscopy study of electrochemical sodiation and potassiation of carbon nanofibers, Nano Lett. 14 (6) (2014) 3445-3452. [101] Y. Wang, L. Yu, X.W. Lou, Synthesis of highly uniform molybdenum-glycerate spheres and their conversion into hierarchical MoS2 hollow nanospheres for lithium-ion batteries, Angew. Chem. Int. Ed Engl. 55 (26) (2016) 7423-7426. [102] J. Nai, X.W.D. Lou, Hollow structures based on Prussian blue and its analogs for electrochemical energy storage and conversion, Adv. Mater. 31 (38) (2019) e1706825. [103] Y.H. Liu, X.Y. Yu, Y.J. Fang, X.S. Zhu, J.C. Bao, X.S. Zhou, X.W. Lou, Confining SnS2 ultrathin nanosheets in hollow carbon nanostructures for efficient capacitive sodium storage, Joule 2 (4) (2018) 725-735. [104] L.M. Viculis, J.J. Mack, R.B. Kaner, A chemical route to carbon nanoscrolls, Science 299 (5611) (2003) 1361. [105] O.K. Varghese, M. Paulose, C.A. Grimes, Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells, Nat. Nanotechnol. 4 (9) (2009) 592-597. [106] F.X. Xie, L. Zhang, Y. Jiao, A. Vasileff, D.L. Chao, S.Z. Qiao, Hydrogenated dual-shell sodium titanate cubes for sodium-ion batteries with optimized ion transportation, J. Mater. Chem. A 8 (31) (2020) 15829-15833. [107] Z.H. Li, S.C. Ye, W. Wang, Q.J. Xu, H.M. Liu, Y.G. Wang, Y.Y. Xia, Free-standing sandwich-structured flexible film electrode composed of Na2Ti3O7 Nanowires@CNT and reduced graphene oxide for advanced sodium-ion batteries, ACS Omega 2 (9) (2017) 5726-5736. [108] S. Anwer, Y.X. Huang, J. Liu, J.J. Liu, M. Xu, Z.H. Wang, R.J. Chen, J.T. Zhang, F. Wu, Nature-inspired Na2Ti3O7 nanosheets-formed three-dimensional microflowers architecture as a high-performance anode material for rechargeable sodium-ion batteries, ACS Appl. Mater. Interfaces 9 (13) (2017) 11669-11677. [109] S.H. Wang, Y.Y. Zhu, M. Jiang, J.L. Cui, Y.Q. Zhang, W.X. He, Interconnected Na2Ti3O7 nanotube/g-C3N4/graphene network as high performance anode materials for sodium storage, Int. J. Hydrog. Energy 45 (38) (2020) 19611-19619. [110] S.I.R. Costa, Y.S. Choi, A.J. Fielding, A.J. Naylor, J.M. Griffin, Z. Sofer, D.O. Scanlon, N. Tapia-Ruiz, Surface engineering strategy using urea to improve the rate performance of Na2Ti3O7 in Na-ion batteries, Chemistry 27 (11) (2021) 3875-3886. [111] Y. Luo, Y.Z. Zhao, J. Ma, Y.S. Huang, S. Han, M.G. Zhou, H.L. Lin, Sandwich-like Na2Ti3O7 nanosheet/Ti3C2 MXene composite for high-performance lithium/sodium-ion batteries, J. Phys. Chem. C 126 (43) (2022) 18229-18237. [112] W. Wang, S.A. He, Z. Cui, Q. Liu, M.F. Yuen, J. Zhu, H. Wang, M. Gao, W. Luo, J. Hu, R. Zou, Boosting charge transfer via heterostructure engineering of Ti2CTx/Na2Ti3O7 nanobelts array for superior sodium storage performance, Small 18 (41) (2022) e2203948. [113] D. Pan, W.X. Chen, S.W. Sun, X. Lu, X.L. Wu, C.Y. Yu, Y.S. Hu, Y. Bai, A high-rate capability and energy density sodium ion full cell enabled by F-doped Na2Ti3O7 hollow spheres, J. Mater. Chem. A 10 (43) (2022) 23232-23243. [114] S. Chandel, Zulkifli, J. Kim, A.K. Rai, Effect of vanadium doping on the electrochemical performances of sodium titanate anode for sodium ion battery application, Dalton Trans. 51 (31) (2022) 11797-11805. [115] J. Mei, T.T. Wang, D.C. Qi, J.J. Liu, T. Liao, Y. Yamauchi, Z.Q. Sun, Three-dimensional fast Na-ion transport in sodium titanate nanoarchitectures via engineering of oxygen vacancies and bismuth substitution, ACS Nano 15 (8) (2021) 13604-13615. [116] Y.Y. Wu, J. Wu, S. Zhang, L.W. Zhu, Z. Yan, X.B. Cao, Enhanced sodium-ion storage with Fe3O4@Na2Ti3O7 nanoleafs, J. Solid State Chem. 300 (2021) 122247. [117] C.Y. Hu, Y. Li, D. Wang, C.J. Wu, F. Chen, L.H. Zhang, F. Wan, W.B. Hua, Y. Sun, B.H. Zhong, Z.G. Wu, X.D. Guo, Improving low-temperature performance and stability of Na2Ti6O13 anodes by the Ti-O spring effect through Nb-doping, Angew. Chem. Int. Ed. 62 (46) (2023) 2312310. [118] X. Zhang, Y. Huang, S. Wu, Y. Zeng, M. Yu, F. Cheng, X. Lu, Y. Tong, Engineering oxygen-deficient Na2Ti3O7 nanobelt arrays on carbon cloth as advanced flexible anodes for sodium-ion batteries, Acta Phys. Chim. Sin., 34 (2018) 219-226. [119] Z.X. Li, B.L. Wang, Robust attitude tracking control of spacecraft in the presence of disturbances, J. Guid. Contr. Dyn. 30 (4) (2007) 1156-1159. [120] S.Y. Li, S.X. Wen, H. Ding, L. Yang, D.N. Zhao, N.S. Zhang, H. Dong, S.M. Wang, J.J. Zhang, J. Wang, Improve the electrochemical performance of Na2Ti3O7 nanorod through pitch coating, ACS Sustainable Chem. Eng. 10 (13) (2022) 4247-4257. [121] D.Z. Kong, Y. Wang, S.Z. Huang, Y. Von Lim, J. Zhang, L.F. Sun, B. Liu, T.P. Chen, P. Valdivia y Alvarado, H.Y. Yang, Surface modification of Na2Ti3O7 nanofibre arrays using N-doped graphene quantum dots as advanced anodes for sodium-ion batteries with ultra-stable and high-rate capability, J. Mater. Chem. A 7 (20) (2019) 12751-12762. [122] T.B. Song, H. Chen, Q.J. Xu, H.M. Liu, Y.G. Wang, Y.Y. Xia, Black phosphorus stabilizing Na2Ti3O7/C each other with an improved electrochemical property for sodium-ion storage, ACS Appl. Mater. Interfaces 10 (43) (2018) 37163-37171. [123] J. Xia, H. Zhao, W.K. Pang, Z. Yin, B. Zhou, G. He, Z. Guo, Y. Du, Lanthanide doping induced electrochemical enhancement of Na2Ti3O7 anodes for sodium-ion batteries, Chem. Sci. 9 (14) (2018) 3421-3425. [124] B.N. Yun, H.L. Du, J.Y. Hwang, H.G. Jung, Y.K. Sun, Improved electrochemical performance of boron-doped carbon-coated lithium titanate as an anode material for sodium-ion batteries, J. Mater. Chem. A 5 (6) (2017) 2802-2810. [125] N.N. Wang, X. Xu, T. Liao, Y. Du, Z.C. Bai, S.X. Dou, Boosting sodium storage of double-shell sodium titanate microspheres constructed from 2D ultrathin nanosheets via sulfur doping, Adv. Mater. 30 (49) (2018) e1804157. [126] Z.H. Chen, L. Lu, Y. Gao, Q.X. Zhang, C.X. Zhang, C.W. Sun, X.Y. Chen, Effects of F-doping on the electrochemical performance of Na2Ti3O7 as an anode for sodium-ion batteries, Materials 11 (11) (2018) 2206. [127] J.L. Liu, Z.Y. Wang, Z.G. Lu, L. Zhang, F.X. Xie, A. Vasileff, S.Z. Qiao, Efficient surface modulation of single-crystalline Na2Ti3O7 nanotube arrays with Ti3+ self-doping toward superior sodium storage, ACS Mater. Lett. 1 (4) (2019) 389-398. [128] T.B. Song, S.C. Ye, H.M. Liu, Y.G. Wang, Self-doping of Ti3+ into Na2Ti3O7 increases both ion and electron conductivity as a high-performance anode material for sodium-ion batteries, J. Alloys Compd. 767 (2018) 820-828. [129] C.L. Wei, L.W. Tan, Y.C. Zhang, B.J. Xi, S.L. Xiong, J.K. Feng, MXene/organics heterostructures enable ultrastable and high-rate lithium/sodium batteries, ACS Appl. Mater. Interfaces 14 (2) (2022) 2979-2988. [130] G.Y. Du, M.L. Tao, W. Gao, Y.Q. Zhang, R.M. Zhan, S.J. Bao, M.W. Xu, Preparation of MoS2/Ti3C2Tx composite as anode material with enhanced sodium/lithium storage performance, Inorg. Chem. Front. 6 (1) (2019) 117-125. [131] P. Zhang, R.A. Soomro, Z. Guan, N. Sun, B. Xu, 3D carbon-coated MXene architectures with high and ultrafast lithium/sodium-ion storage, Energy Storage Mater. 29 (2020) 163-171. [132] W. Zhong, M.L. Tao, W.W. Tang, W. Gao, T.T. Yang, Y.Q. Zhang, R.M. Zhan, S.J. Bao, M.W. Xu, MXene-derivative pompon-like Na2Ti3O7@C anode material for advanced sodium ion batteries, Chem. Eng. J. 378 (2019) 122209. [133] L. Jiao, C. Zhang, C.N. Geng, S.C. Wu, H. Li, W. Lv, Y. Tao, Z.J. Chen, G.M. Zhou, J. Li, G.W. Ling, Y. Wan, Q.H. Yang, Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries, Adv. Energy Mater. 9 (19) (2019) 1900219. [134] H. Yang, R. Xu, Y. Gong, Y. Yao, L. Gu, Y. Yu, An interpenetrating 3D porous reticular Nb2O5@carbon thin film for superior sodium storage, Nano Energy 48 (2018) 448-455. [135] Y.Z. He, P. Xu, B. Zhang, Y.C. Du, B. Song, X.J. Han, H.S. Peng, Ultrasmall MnO nanoparticles supported on nitrogen-doped carbon nanotubes as efficient anode materials for sodium ion batteries, ACS Appl. Mater. Interfaces 9 (44) (2017) 38401-38408. [136] Y.T. Zhu, K. Ameyama, P.M. Anderson, I.J. Beyerlein, H.J. Gao, H.S. Kim, E. Lavernia, S. Mathaudhu, H. Mughrabi, R.O. Ritchie, N. Tsuji, X.Y. Zhang, X.L. Wu, Heterostructured materials: superior properties from hetero-zone interaction, Mater. Res. Lett. 9 (1) (2021) 1-31. [137] J.J. Wang, X.Y. Yue, Z.K. Xie, A. Abudula, G.Q. Guan, MOFs-derived transition metal sulfide composites for advanced sodium ion batteries, Energy Storage Mater. 41 (2021) 404-426. [138] X. Ou, L. Cao, X.H. Liang, F.H. Zheng, H.S. Zheng, X.F. Yang, J.H. Wang, C.H. Yang, M.L. Liu, Fabrication of SnS2/Mn2SnS4/carbon heterostructures for sodium-ion batteries with high initial coulombic efficiency and cycling stability, ACS Nano 13 (3) (2019) 3666-3676. [139] K.K. Li, J. Zhang, D.M. Lin, D.W. Wang, B.H. Li, W. Lv, S. Sun, Y.B. He, F.Y. Kang, Q.H. Yang, L.M. Zhou, T.Y. Zhang, Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes, Nat. Commun. 10 (1) (2019) 725. [140] X.X. Chen, H.Q. Liu, M.Z. Zhou, G.Z. Fang, H.M. Zhang, Z.Y. Cai, X.J. Zhao, L.R. Xiao, S.N. Liu, Y. Zhang, Construting stable 2×2 tunnel-structured K1.28Ti8O16@N-doped carbon nanofibers for ultralong cycling sodium-ion batteries, Electrochim. Acta 401 (2022) 139522. |
[1] | Maoqiao Xiang, Wenjun Ding, Qinghua Dong, Qingshan Zhu. Synthesis methods and powder quality of titanium monocarbide[J]. 中国化学工程学报, 2024, 72(8): 10-18. |
[2] | Yuting Zhang, Yuwei Tang, Ruiping Yan, Shuang Liang, Zhongmou Liu, Yadong Yang. Green-synthesized, biochar-supported nZVI from mango kernel residue for aqueous hexavalent chromium removal: Performance, mechanism and regeneration[J]. 中国化学工程学报, 2024, 71(7): 91-101. |
[3] | Hai Cao, Haibin Yang, Yanxiong Fang, Yuandi Zeng, Xiaolan Cai, Jingjing Ma. Study on trifluoromethanesulfonic acid-promoted synthesis of daidzein: Process optimization and reaction mechanism[J]. 中国化学工程学报, 2024, 71(7): 132-139. |
[4] | Hong-Qiang Fan, Fei Li, Hong-Xing Zheng, Wu-ji Pan, Mei-Zhen Wu, Yashar Behnamian, Ju-Bo Peng, Dong-Hai Lin. Multiple factors influencing high-purity indium electrolytic refining[J]. 中国化学工程学报, 2024, 71(7): 148-160. |
[5] | Huashuai Wu, Gang Wang, Yong Yang, Yongwang Li. Modeling analysis of cobalt-based Fischer-Tropsch catalyst particles[J]. 中国化学工程学报, 2024, 70(6): 82-92. |
[6] | Jing Wen, Ruirui Yuan, Tao Jiang, Tangxia Yu, Yufan Zhang. Solvothermal synthesis and adsorption performance of layered boehmite using aluminum chloride and high-alumina fly ash[J]. 中国化学工程学报, 2024, 70(6): 280-290. |
[7] | Liuyu Song, Haibo Li, Pengkai Wang, Yu Shang, Yue Yang, Zhaoyu Wu. MXene: Promising materials for magnesium-ion batteries[J]. 中国化学工程学报, 2024, 69(5): 199-211. |
[8] | Qingping Qu, Daoyan Liu, Hao Lyu, Jinsheng Sun. Process synthesis for the separation of coal-to-ethanol products[J]. 中国化学工程学报, 2024, 69(5): 263-278. |
[9] | Wei Guo, Yan Zhang, Xiaxin Lei, Shuang Wang. An effective strategy of constructing multi-metallic oxides of ZnO/CoNiO2/CoO/C microflowers for improved supercapacitive performance[J]. 中国化学工程学报, 2024, 67(3): 1-8. |
[10] | Tiesen Li, Ting Chen, Yinghui Ye, Peng Dong, Tinghai Wang, Qingyan Cui, Chan Wang, Yuanyuan Yue. OSDA-free synthesis of FeZSM-22 zeolite from natural minerals for n-octane hydroisomerization[J]. 中国化学工程学报, 2024, 66(2): 51-59. |
[11] | Yinghui Liu, Shaoduo Liu, Xiaosheng Wang, Hongjing Wang, Ranjia Li, Changchun Yu, Chunming Xu, Yuxiang Liu, Zhengqiu Xie, Yongqiang Wang, Pan Tang. Synthesis of mordenite by solvent-free method and its application in the dimethyl ether carbonylation reaction[J]. 中国化学工程学报, 2024, 66(2): 216-223. |
[12] | Xiaodong Zhang, Lu Jin, Jinsheng Sun. Optimal synthesis of heat-integrated distillation configurations using the two-column superstructure[J]. 中国化学工程学报, 2024, 66(2): 238-249. |
[13] | Wen Xiao, Peng Dong, Chan Wang, Jingdong Xu, Tiesen Li, Haibo Zhu, Tinghai Wang, Renwei Xu, Yuanyuan Yue. Facile synthesis of hierarchical NaX zeolite from natural kaolinite for efficient Knoevenagel condensation[J]. 中国化学工程学报, 2024, 65(1): 75-84. |
[14] | Xin Liu, Lei Yang, Tao Wei, Shanping Liu, Beibei Xiao. Active MoS2-based electrode for green ammonia synthesis[J]. 中国化学工程学报, 2024, 65(1): 268-275. |
[15] | Jinpei Huang, Xingwei Lu, Xuejing Zhang, Yiqiang Jin, Yifeng Zhou. Continuous, efficient and safe synthesis of 1-oxa-2-azaspiro [2.5] octane in a microreaction system[J]. 中国化学工程学报, 2023, 61(9): 37-42. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||