中国化学工程学报 ›› 2024, Vol. 73 ›› Issue (9): 130-145.DOI: 10.1016/j.cjche.2024.04.028
Jie Zhang1, Lei Shi1, Chuanxian Li1,2, Fei Yang1,2, Bo Yao1,2, Guangyu Sun1,2
收稿日期:
2024-02-24
修回日期:
2024-04-18
接受日期:
2024-04-28
出版日期:
2024-09-28
发布日期:
2024-07-02
通讯作者:
Guangyu Sun,E-mail:sunguangyu@upc.edu.cn
基金资助:
Jie Zhang1, Lei Shi1, Chuanxian Li1,2, Fei Yang1,2, Bo Yao1,2, Guangyu Sun1,2
Received:
2024-02-24
Revised:
2024-04-18
Accepted:
2024-04-28
Online:
2024-09-28
Published:
2024-07-02
Contact:
Guangyu Sun,E-mail:sunguangyu@upc.edu.cn
Supported by:
摘要: Due to the high-pressure and low-temperature exploitation environment, the characteristics of hydrates are directly related to the safety of pipeline transportation, which is an important research topic for deep-sea flow assurance. In this review, six kinds of extensively used experimental equipment and three types of hot computer simulation methods, which are employed to explore the hydrate characteristics under deep-sea conditions, are comprehensively summarized, covering micro to macro research scales. The experimental equipment includes rotational rheometer, flow loop, high-pressure reactor, differential scanning calorimeter (DSC), micromechanical force (MMF) testing apparatus and microscopic morphology observation (MMO) device. The computer simulation methods involve numerical simulation, molecular dynamics (MD) simulation, Monte Carlo (MC) simulation and first-principles calculation. Their advantages and disadvantages are compared in detail, and their basic principles, main applications and the latest research progress are introduced. Some suggestions for future research methods are also provided. This work aims to help readers quickly grasp the characteristics of the most used research methods, choose suitable methods for their study and further expand these methods, so as to advance the development in hydrate research area.
Jie Zhang, Lei Shi, Chuanxian Li, Fei Yang, Bo Yao, Guangyu Sun. Research methods and devices for hydrate characteristics during oil and gas transportation: A review[J]. 中国化学工程学报, 2024, 73(9): 130-145.
Jie Zhang, Lei Shi, Chuanxian Li, Fei Yang, Bo Yao, Guangyu Sun. Research methods and devices for hydrate characteristics during oil and gas transportation: A review[J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 130-145.
[1] E.D. Sloan, Fundamental principles and applications of natural gas hydrates, Nature 426 (2003) 353-359. [2] J. Zhang, C.X. Li, L. Shi, X. Xia, F. Yang, G.Y. Sun, The Formation and aggregation of hydrate in W/O emulsion containing different compositions: A review, Chem. Eng. J. 445 (2022) 136800. [3] F. Caputo, F. Cascetta, G. Lamanna, G. Rotondo, A. Soprano, Estimation of the damage in a natural gas flow line caused by the motion of methane hydrates, J. Nat. Gas Sci. Eng. 26 (2015) 1222-1231. [4] D. Turner, Clathrate hydrate formation in water-in-oil dispersions, Ph.D. Thesis, Chemical Engineering, Colorado School of Mines, Golden, 2006. [5] S. Sinehbaghizadeh, A. Saptoro, S. Amjad-Iranagh, P. Naeiji, A.N.T. Tiong, A.H. Mohammadi, A comprehensive review on molecular dynamics simulation studies of phenomena and characteristics associated with clathrate hydrates, Fuel 338 (2023) 127201. [6] Y. Lv, X.R. Xia, F. Wang, X.D. Wu, C.X. Cheng, L.X. Zhang, L. Yang, J.F. Zhao, Y.C. Song, Clathrate hydrate for phase change cold storage: Simulation advances and potential applications, J. Energy Storage 55 (2022) 105835. [7] X.M. Zhang, H.J. Yang, T.T. Huang, J.P. Li, P.Y. Li, Q.B. Wu, Y.M. Wang, P. Zhang, Research progress of molecular dynamics simulation on the formation-decomposition mechanism and stability of CO2 hydrate in porous media: A review, Renew. Sustain. Energy Rev. 167 (2022) 112820. [8] A.K. Sum, C.A. Koh, E.D. Sloan, Clathrate hydrates: From laboratory science to engineering practice, Ind. Eng. Chem. Res. 48 (16) (2009) 7457-7465. [9] Q.B. Sun, Y.T. Kang, Review on CO2 hydrate formation/dissociation and its cold energy application, Renew. Sustain. Energy Rev. 62 (2016) 478-494. [10] A.A.A. Majid, D.T. Wu, C.A. Koh, A perspective on rheological studies of gas hydrate slurry properties, Engineering 4 (3) (2018) 321-329. [11] Z.M. Aman, C.A. Koh, Interfacial phenomena in gas hydrate systems, Chem. Soc. Rev. 45 (6) (2016) 1678-1690. [12] I.U. Haq, A. Qasim, B. Lal, D.B. Zaini, Mini review on environmental issues concerning conventional gas hydrate inhibitors, Process. Saf. Prog. 41 (S1) (2022) S129-S134. [13] S. Elhenawy, M. Khraisheh, F. Almomani, M.A. Al-Ghouti, M.K. Hassan, A. Al-Muhtaseb, Towards gas hydrate-free pipelines: A comprehensive review of gas hydrate inhibition techniques, Energies 15 (22) (2022) 8551. [14] D.C. Salmin, D. Estanga, C.A. Koh, Review of gas hydrate anti-agglomerant screening techniques, Fuel 319 (2022) 122862. [15] C.P. Tang, D.Q. Liang, Inhibitory effects of novel green inhibitors on gas hydrate formation, Chin. J. Chem. Eng. 27 (9) (2019) 2107-2117. [16] I.N. Tsimpanogiannis, I.G. Economou, Monte Carlo simulation studies of clathrate hydrates: A review, J. Supercrit. Fluids 134 (2018) 51-60. [17] E.G. Hammerschmidt, Formation of gas hydrates in natural gas transmission lines, Ind. Eng. Chem. 26 (8) (1934) 851-855. [18] T.T. Dao, A.X. Ye, A.A. Shaito, N. Roye, K. Hedman, Capillary rheometry: Analysis of low-viscosity fluids, and viscous liquids and melts at high shear rates, Am. Lab. 41 (11) (2009) 14-22. [19] G. Jin, X.L. Zhao, M.M. Wang, Evaluation of rheological measurement of polymer blends melts in torque rheometer, Adv. Mater. Res. 314-316 (2011) 1424-1429. [20] D. Renggli, A. Alicke, R.H. Ewoldt, J. Vermant, Operating windows for oscillatory interfacial shear rheology, J. Rheol. 64 (1) (2020) 141-160. [21] F.J. Sheng, J. Zhang, S. Yang, G.Y. Sun, C.X. Li, F. Yang, B. Yao, X.B. Jiang, Y.Y. Zhou, Foaming characteristics of crude oil-CO2 mixture by depressurization: Influence of crude oil viscosity and wax precipitation, Colloids Surf. A Physicochem. Eng. Aspects 660 (2023) 130887. [22] Z. Zhang, H. Zhang, Y. Bi, X. Sun, X. Xu, Application of rotational rheometer in oils and fats, China Oils and Fats 38 (2013) 1-6. (in Chinese). [23] B.H. Shi, S. Chai, L. Ding, Y.C. Chen, Y. Liu, S.F. Song, H.Y. Yao, H.H. Wu, W. Wang, J. Gong, An investigation on gas hydrate formation and slurry viscosity in the presence of wax crystals, AlChE. J. 64 (9) (2018) 3502-3518. [24] X.F. Lv, B.Y. Bai, Y. Zhao, Y. Liu, Q.L. Ma, C.S. Wang, S.D. Zhou, S.F. Song, B.H. Shi, Study on rheological properties of natural gas hydrate slurry, Chem. Eng. Res. Des. 188 (2022) 779-789. [25] A. Ahuja, G. Zylyftari, J.F. Morris, Yield stress measurements of cyclopentane hydrate slurry, J. Non Newton. Fluid Mech. 220 (2015) 116-125. [26] Y.H. Qin, Z.M. Aman, P.F. Pickering, M.L. Johns, E.F. May, High pressure rheological measurements of gas hydrate-in-oil slurries, J. Non Newton. Fluid Mech. 248 (2017) 40-49. [27] Z.X. Liu, Y.C. Song, W.G. Liu, R. Liu, C. Lang, Y.H. Li, Rheology of methane hydrate slurries formed from water-in-oil emulsion with different surfactants concentrations, Fuel 275 (2020) 117961. [28] Z. Liu, W. Liu, C. Lang, R. Liu, Y. Song, Y. Li, Viscosity investigation on metastable hydrate suspension in oil-dominated systems, Chem. Eng. Sci. 238 (2021) 116608. [29] E.B. Webb, P.J. Rensing, C.A. Koh, E.D. Sloan, A.K. Sum, M.W. Liberatore, High-pressure rheology of hydrate slurries formed from water-in-oil emulsions, Energy Fuels 26 (2012) 3504-3509. [30] E.B. Webb, C.A. Koh, M.W. Liberatore, High pressure rheology of hydrate slurries formed from water-in-mineral oil emulsions, Ind. Eng. Chem. Res. 53 (2014) 6998-7007. [31] A.W. Saak, H.M. Jennings, S.P. Shah, The influence of wall slip on yield stress and viscoelastic measurements of cement paste, Cem. Concr. Res. 31 (2001) 205-212. [32] G. Pandey, P. Linga, J.S. Sangwai, High pressure rheology of gas hydrate formed from multiphase systems using modified couette rheometer, Rev. Sci. Instrum. 88 (2017) 025102. [33] P.H. de Lima Silva, M.F. Naccache, P.R. de Souza Mendes, F.B. Campos, A. Teixeira, A.K. Sum, Rheology of tetrahydrofuran hydrate slurries, Energy Fuels 31 (2017) 14385-14392. [34] A.A.A. Majid, D.T. Wu, C.A. Koh, New in situ measurements of the viscosity of gas clathrate hydrate slurries formed from model water-in-oil emulsions, Langmuir 33 (2017) 11436-11445. [35] P.U. Karanjkar, A. Ahuja, G. Zylyftari, J.W. Lee, J.F. Morris, Rheology of cyclopentane hydrate slurry in a model oil-continuous emulsion, Rheol. Acta 55 (2016) 235-243. [36] A.A.A. Majid, B. Tanner, C.A. Koh, Cyclopentane hydrate slurry viscosity measurements coupled with visualisation, Mol. Phys. 117 (23-24) (2019) 3860-3870. [37] J. Peixinho, P.U. Karanjkar, J.W. Lee, J.F. Morris, Rheology of hydrate forming emulsions, Langmuir 26 (14) (2010) 11699-11704. [38] Y.C. Chen, B.H. Shi, Y. Liu, Q.L. Ma, S.F. Song, L. Ding, X.F. Lv, H.H. Wu, W. Wang, H.Y. Yao, J. Gong, In situ viscosity measurements of a cyclopentane hydrate slurry in waxy water-in-oil emulsions, Energy Fuels 33 (4) (2019) 2915-2925. [39] G. Zylyftari, J.W. Lee, J.F. Morris, Salt effects on thermodynamic and rheological properties of hydrate forming emulsions, Chem. Eng. Sci. 95 (2013) 148-160. [40] R. Camargo, T. Palermo, Rheological properties of hydrate suspensions in an asphaltenic crude oil, Rheol. Prop. Hydrate Suspens. Asph. Crude Oil (May 2002) (2002) 880-885. [41] I.M. Krieger, T.J. Dougherty, A mechanism for non-Newtonian flow in suspensions of rigid spheres, Trans. Soc. Rheol. 3 (1) (1959) 137-152. [42] P. Mills, Non-Newtonian behaviour of flocculated suspensions, J. Phyique Lett. 46 (7) (1985) 301-309. [43] Y.H. Qin, P.F. Pickering, M.L. Johns, E.F. May, Z.M. Aman, Rheological method to describe metastable hydrate-in-oil slurries, Energy Fuels 34 (7) (2020) 7955-7964. [44] A.F. Dufour, J.M. Herri, Formation and transportation of methane hydrate slurries in a flow loop reactor: Influence of a dispersant, In: 4th International Conference on Gas Hydrates, 2002, Japan. [45] T. Palermo, A. Fidel-Dufour, P. Maurel, J.I. Peytavy, C. Hurtevent, Model of hydrates agglomeration - application to hydrates formation in an ccidic crude oil, In: 12th International Conference on Multiphase Production Technology, 2005, Spain. [46] J.A. Boxall, S.R. Davies, J.W. Nicholas, C.A. Koh, E.D. Sloan, Hydrate blockage potential in an oil-dominated system studied using a four inch flow loop, In: 6th International Conference on Gas Hydrates, 2008, Canada. [47] B.Z. Peng, J. Chen, C.Y. Sun, A. Dandekar, S.H. Guo, B. Liu, L. Mu, L.Y. Yang, W.Z. Li, G.J. Chen, Flow characteristics and morphology of hydrate slurry formed from (natural gas+diesel oil/condensate oil+water) system containing anti-agglomerant, Chem. Eng. Sci. 84 (2012) 333-344. [48] W.C. Wang, S.S. Fan, D.Q. Liang, Y.X. Li, Experimental study on flow characteristics of tetrahydrofuran hydrate slurry in pipelines, J. Nat. Gas Chem. 19 (3) (2010) 318-322. [49] Z.Y. Liu, M.J. Yang, H.Q. Zhang, B. Xiao, L. Yang, J.F. Zhao, A high-pressure visual flow loop for hydrate blockage detection and observation, Rev. Sci. Instrum. 90 (7) (2019) 074102. [50] M. Di Lorenzo, K. Kozielski, Y. Seo, G.S. Soto, J.F. Zhang, Hydrate Formation Characteristics of Natural Gas During Transient Operation of a Flow LineAll Days, In: SPE Asia Pacific Oil and Gas Conference, 2010, Australia. [51] H. Zhang, J.W. Du, Y.H. Wang, X.M. Lang, G. Li, J.B. Chen, S.S. Fan, Investigation into THF hydrate slurry flow behaviour and inhibition by an anti-agglomerant, RSC Adv. 8 (22) (2018) 11946-11956. [52] Z.W. Sun, K.J. Shi, D.W. Guan, X. Lv, J.G. Wang, W.G. Liu, Q.P. Li, H.Y. Yao, L. Yang, J.F. Zhao, Current flow loop equipment and research in hydrate-associated flow assurance, J. Nat. Gas Sci. Eng. 96 (2021) 104276. [53] M.R. Talaghat, Experimental investigation of induction time for double gas hydrate formation in the simultaneous presence of the PVP and l-Tyrosine as kinetic inhibitors in a mini flow loop apparatus, J. Nat. Gas Sci. Eng. 19 (2014) 215-220. [54] Y.C. Rao, Z.W. Wang, S.L. Wang, M.G. Yang, Investigation on gas hydrate slurry pressure drop properties in a spiral flow loop, Energies 11 (6) (2018) 1384. [55] H.I. Perez-Lopez, O. Elizalde-Solis, J.R. Avendano-Gomez, A. Zuniga-Moreno, F. Sanchez-Minero, Methane hydrate formation and dissociation in synperonic PE/F127, CTAB, and SDS surfactant solutions, J. Chem. Eng. Data 63 (7) (2018) 2477-2485. [56] J. Park, K. Shin, J. Kim, H.E. Lee, Y. Seo, N. Maeda, W. Tian, C.D. Wood, Effect of hydrate shell formation on the stability of dry water, J. Phys. Chem. C 119 (4) (2015) 1690-1699. [57] D.J. Turner, K.T. Miller, E.D. Sloan, Direct conversion of water droplets to methane hydrate in crude oil, Chem. Eng. Sci. 64 (23) (2009) 5066-5072. [58] X. Zhao, Q.C. Fang, Z.S. Qiu, S.Y. Mi, Z.Y. Wang, Q. Geng, Y.B. Zhang, Experimental investigation on hydrate anti-agglomerant for oil-free systems in the production pipe of marine natural gas hydrates, Energy 242 (2022) 122973. [59] W.C. Wang, K. Jiang, Y.X. Li, Z.Z. Shi, G.C. Song, R.X. Duan, Kinetics of methane gas hydrate formation with microscale sand in an autoclave with windows, Fuel 209 (2017) 85-95. [60] Z.M. Aman, C.B. Paris, E.F. May, M.L. Johns, D. Lindo-Atichati, High-pressure visual experimental studies of oil-in-water dispersion droplet size, Chem. Eng. Sci. 127 (2015) 392-400. [61] G.C. Song, Y.X. Li, W.C. Wang, P.F. Zhao, K. Jiang, X. Ye, Experimental study of hydrate formation in oil-water systems using a high-pressure visual autoclave, AlChE. J. 65 (9) (2019) e16667. [62] J. Chen, G.J. Chen, Q. Yuan, B. Deng, L.M. Tao, C.H. Li, S.X. Xiao, J.H. Jiang, X. Li, J.Y. Li, Insights into induction time and agglomeration of methane hydrate formation in diesel oil dominated dispersed systems, Energy 170 (2019) 604-610. [63] D.C. Salmin, A.A.A. Majid, J. Wells, D. Estanga, M. Rivero, D.T. Wu, L.E. Zerpa, C.A. Koh, Study of hydrate anti-agglomerant dosage effectiveness in a high-pressure stirred autoclave equipped with particle-analysis probes, SPE J. 26 (3) (2021) 1200-1212. [64] P.C. Chua, M.A. Kelland, Study of the gas hydrate antiagglomerant performance of a series of mono- and bis-amine oxides: Dual antiagglomerant and kinetic hydrate inhibition behavior, Energy Fuels 32 (2) (2018) 1674-1684. [65] M. Akhfash, Z.M. Aman, S.Y. Ahn, M.L. Johns, E.F. May, Gas hydrate plug formation in partially-dispersed water-oil systems, Chem. Eng. Sci. 140 (2016) 337-347. [66] J.Q. Jing, L.Q. Zhuang, R. Karimov, J. Sun, X.T. Zhang, Investigation of natural gas hydrate formation and slurry viscosity in non-emulsifying oil systems, Chem. Eng. Res. Des. 190 (2023) 687-703. [67] C.P. Tang, A. Farhadian, A. Berisha, M.A. Deyab, J. Chen, D. Iravani, A. Rahimi, Z.C. Zhang, D.Q. Liang, Novel biosurfactants for effective inhibition of gas hydrate agglomeration and corrosion in offshore oil and gas pipelines, ACS Sustainable Chem. Eng. 11 (1) (2023) 353-367. [68] H.J. Zhao, M.W. Sun, A. Firoozabadi, Anti-agglomeration of natural gas hydrates in liquid condensate and crude oil at constant pressure conditions, Fuel 180 (2016) 187-193. [69] J.W. Lachance, E.D. Sloan, C.A. Koh, Determining gas hydrate kinetic inhibitor effectiveness using emulsions, Chem. Eng. Sci. 64 (1) (2009) 180-184. [70] J.G. Delgado-Linares, A.A.A. Majid, E.D. Sloan, C.A. Koh, A.K. Sum, Model water-in-oil emulsions for gas hydrate studies in oil continuous systems, Energy Fuels 27 (8) (2013) 4564-4573. [71] Z.M. Aman, K. Pfeiffer, S.J. Vogt, M.L. Johns, E.F. May, Corrosion inhibitor interaction at hydrate-oil interfaces from differential scanning calorimetry measurements, Colloids Surf. A Physicochem. Eng. Aspects 448 (2014) 81-87. [72] M. Bhowmick, Evaluation and characterization of transdermal therapeutic systems: An exhaustive pictorial and figurative review, J. Drug Delivery Ther. 4 (6) (2014): 9-22. [73] Y. Lee, D. Lee, J.W. Lee, Y. Seo, Enclathration of CO2 as a co-guest of structure H hydrates and its implications for CO2 capture and sequestration, Appl. Energy 163 (2016) 51-59. [74] M.J. Cha, Y. Hu, A.K. Sum, Methane hydrate phase equilibria for systems containing NaCl, KCl, and NH4Cl, Fluid Phase Equilib. 413 (2016) 2-9. [75] B.B. Ge, X.Y. Li, D.L. Zhong, Y.Y. Lu, Investigation of natural gas storage and transportation by gas hydrate formation in the presence of bio-surfactant sulfonated lignin, Energy 244 (2022) 122665. [76] A.A.A. Majid, J. Creek, S. Subramanian, D.A. Estanga, C.A. Koh, Rapid screening method for hydrate agglomeration and plugging assessment using high pressure differential scanning calorimetry, Fuel 306 (2021) 121625. [77] S. Yun, D. Lee, S. An, Y. Seo, Experimental and computational investigations of the abnormal slow dissociation behavior of CH4 hydrate in the presence of Poly(N-vinylcaprolactam), Energy 283 (2023) 128522. [78] J.P. Torre, F. Plantier, L. Marlin, R. Andre, D. Haillot, A novel stirred microcalorimetric cell for DSC measurements applied to the study of ice slurries and clathrate hydrates, Chem. Eng. Res. Des. 160 (2020) 465-475. [79] R.K. Ramamoorthy, S. Teychene, I. Rodriguez-Ruiz, J.P. Torre, Insights on the formation and dissociation mechanisms of cyclopentane hydrate obtained by using calorimetry and optical microscopy, Chem. Eng. Res. Des. 177 (2022) 117-122. [80] S.O. Yang, D.M. Kleehammer, Z.X. Huo, E.D. Sloan Jr, K.T. Miller, Temperature dependence of particle-particle adherence forces in ice and clathrate hydrates, J. Colloid Interface Sci. 277 (2) (2004) 335-341. [81] C.J. Taylor, L.E. Dieker, K.T. Miller, C.A. Koh, E.D.J. Sloan, Micromechanical adhesion force measurements between tetrahydrofuran hydrate particles, J. Colloid Interface Sci. 306 (2) (2007) 255-261. [82] Z.M. Aman, S.E. Joshi, E.D. Sloan, A.K. Sum, C.A. Koh, Micromechanical cohesion force measurements to determine cyclopentane hydrate interfacial properties, J. Colloid Interface Sci. 376 (1) (2012) 283-288. [83] B.R. Lee, C.A. Koh, A.K. Sum, Development of a high pressure micromechanical force apparatus, Rev. Sci. Instrum. 85 (9) (2014) 095120. [84] Q. Luo, Z.H. Liu, F.L. Ning, D.L. Gao, Z.C. Liu, X.F. Dou, Y.J. Yu, Micromechanical tangential force measurements between tetrahydrofuran hydrate particles, Fuel 316 (2022) 123073. [85] C.W. Liu, C.R. Zhou, M.Z. Li, S.K. Tong, M.H. Qi, Z.Y. Wang, Direct measurements of the interactions between methane hydrate particle-particle/droplet in high pressure gas phase, Fuel 332 (2023) 126190. [86] S.L. Wang, S.S. Fan, X.M. Lang, Y.H. Wang, P.F. Wang, Particle size dependence of clathrate hydrate particle cohesion in liquid/gaseous hydrocarbons, Fuel 259 (2020) 116201. [87] S.S. Fan, H. Zhang, G. Yang, Y.H. Wang, G. Li, X.M. Lang, Reduction clathrate hydrates growth rates and adhesion forces on surfaces of inorganic or polymer coatings, Energy Fuels 34 (11) (2020) 13566-13579. [88] S.J. Hu, C.A. Koh, CH4/C2H6 gas hydrate interparticle interactions in the presence of anti-agglomerants and salinity, Fuel 269 (2020) 117208. [89] N. Khan, A. Kumar, M.L. Johns, E.F. May, Z.M. Aman, Experimental investigation to elucidate the hydrate Anti-Agglomerating characteristics of 2-Butoxyethanol, Chem. Eng. J. 471 (2023) 144288. [90] N.A. Ismail, J.G. Delgado-Linares, C.A. Koh, High pressure micromechanical force method to assess the non-plugging potential of crude oils and the detection of asphaltene-hydrate mixed agglomerates, Fuel 335 (2023) 126871. [91] N.A. Ismail, J.G. Delgado-Linares, C.A. Koh, Microscale evaluation of natural anti-agglomeration behavior of oils via gas hydrate interparticle cohesive force measurements, Fuel 335 (2023) 126959. [92] S.A. Morrissy, A.J. McKenzie, B.F. Graham, M.L. Johns, E.F. May, Z.M. Aman, Reduction of clathrate hydrate film growth rate by naturally occurring surface active components, Energy Fuels 31 (6) (2017) 5798-5805. [93] W. Wang, Q.Y. Huang, S.J. Hu, P. Zhang, C.A. Koh, Influence of wax on cyclopentane clathrate hydrate cohesive forces and interfacial properties, Energy Fuels 34 (2) (2020) 1482-1491. [94] Y. Liu, C.X. Wu, X.F. Lv, H. Du, Q.L. Ma, C.S. Wang, S.D. Zhou, B.H. Shi, S.F. Song, J. Gong, J.M. Duan, Hydrate growth and agglomeration in the presence of wax and anti-agglomerant: A morphology study and cohesive force measurement, Fuel 342 (2023) 127782. [95] P. Servio, P. Englezos, Measurement of dissolved methane in water in equilibrium with its hydrate, J. Chem. Eng. Data 47 (1) (2002) 87-90. [96] P. Servio, P. Englezos, Morphology of methane and carbon dioxide hydrates formed from water droplets, AlChE. J. 49 (1) (2003) 269-276. [97] J. Peixinho, V. Ageorges, B. Duchemin, Growth of clathrate hydrates from water drops in cyclopentane, Energy Fuels 32 (3) (2018) 2693-2698. [98] P.U. Karanjkar, J.W. Lee, J.F. Morris, Surfactant effects on hydrate crystallization at the water-oil interface: Hollow-conical crystals, Cryst. Growth Des. 12 (8) (2012) 3817-3824. [99] C. Dicharry, H. Delroisse, J.P. Torre, G. Barreto, Using microscopic observations of cyclopentane hydrate crystal morphology and growth patterns to estimate the antiagglomeration capacity of surfactants, Energy Fuels 34 (5) (2020) 5176-5187. [100] H. Hayama, M. Mitarai, H. Mori, J. Verrett, P. Servio, R. Ohmura, Surfactant effects on crystal growth dynamics and crystal morphology of methane hydrate formed at gas/liquid interface, Cryst. Growth Des. 16 (10) (2016) 6084-6088. [101] G.C. Song, Y.X. Ning, Y.X. Li, W.C. Wang, Investigation on hydrate growth at the oil-water interface: In the presence of wax and kinetic hydrate inhibitor, Langmuir 36 (48) (2020) 14881-14891. [102] P.H. Guo, G.C. Song, Y.X. Ning, Y.X. Li, W.C. Wang, Investigation on hydrate growth at oil-water interface: In the presence of wax, Energy Fuels 35 (15) (2021) 11884-11895. [103] G.C. Song, Y.X. Ning, Y.X. Li, W.C. Wang, Investigation on hydrate growth at the oil-water interface: In the presence of asphaltene, Chin. J. Chem. Eng. 45 (2022) 211-218. [104] J. Zhang, C.X. Li, F. Yang, L. Shi, B. Yao, G.Y. Sun, Influences of asphaltene subfractions with different polarities on hydrate growth at water/oil interface, Fuel 330 (2022) 125546. [105] J. Zhang, C.X. Li, F. Yang, L. Shi, B. Yao, G.Y. Sun, Study on the influence mechanism of the interaction between waxes and asphaltenes on hydrate growth, Fuel 338 (2023) 127322. [106] B.V. Balakin, A.C. Hoffmann, P. Kosinski, Experimental study and computational fluid dynamics modeling of deposition of hydrate particles in a pipeline with turbulent water flow, Chem. Eng. Sci. 66 (4) (2011) 755-765. [107] B.V. Balakin, S. Lo, P. Kosinski, A.C. Hoffmann, Modelling agglomeration and deposition of gas hydrates in industrial pipelines with combined CFD-PBM technique, Chem. Eng. Sci. 153 (2016) 45-57. [108] Y.C. Rao, L.J. Li, S.L. Wang, S.H. Zhao, S.D. Zhou, Numerical simulation study on flow laws and heat transfer of gas hydrate in the spiral flow pipeline with long twisted band, Entropy (Basel) 23 (4) (2021) 489. [109] E. Jassim, M.A. Abdi, Y. Muzychka, A new approach to investigate hydrate deposition in gas-dominated flowlines, J. Nat. Gas Sci. Eng. 2 (4) (2010) 163-177. [110] B.V. Balakin, A. Kosinska, K.V. Kutsenko, Pressure drop in hydrate slurries: Rheology, granulometry and high water cut, Chem. Eng. Sci. 190 (2018) 77-85. [111] O.M. Umuteme, S. Zahidul Islam, M. Hossain, A. Karnik, An improved computational fluid dynamics (CFD) model for predicting hydrate deposition rate and wall shear stress in offshore gas-dominated pipeline, J. Nat. Gas Sci. Eng. 107 (2022) 104800. [112] P. Li, X.H. Zhang, X.B. Lu, Three-dimensional Eulerian modeling of gas-liquid-solid flow with gas hydrate dissociation in a vertical pipe, Chem. Eng. Sci. 196 (2019) 145-165. [113] X. Duan, B.H. Shi, J.N. Wang, S.F. Song, H.T. Liu, X.T. Li, Y.C. Chen, Q.Y. Liao, J. Gong, S.H. Chen, F. Diao, Simulation of the hydrate blockage process in a water-dominated system via the CFD-DEM method, J. Nat. Gas Sci. Eng. 96 (2021) 104241. [114] G.C. Song, Y.X. Li, W.C. Wang, K. Jiang, Z.Z. Shi, S.P. Yao, Numerical simulation of pipeline hydrate particle agglomeration based on population balance theory, J. Nat. Gas Sci. Eng. 51 (2018) 251-261. [115] G.C. Song, Y.X. Li, W.C. Wang, K. Jiang, Z.Z. Shi, S.P. Yao, Numerical simulation of hydrate slurry flow behavior in oil-water systems based on hydrate agglomeration modelling, J. Petrol. Sci. Eng. 169 (2018) 393-404. [116] G.C. Song, Y.X. Li, W.C. Wang, K. Jiang, Z.Z. Shi, S.P. Yao, Hydrate agglomeration modeling and pipeline hydrate slurry flow behavior simulation, Chin. J. Chem. Eng. 27 (1) (2019) 32-43. [117] G.C. Song, Y.X. Li, W.C. Wang, Z.Z. Shi, Numerical simulation of hydrate particle size distribution and hydrate particle bedding in pipeline flowing systems, J. Dispers. Sci. Technol. 41 (7) (2020) 1051-1064. [118] S.R. Davies, J.A. Boxali, C.A. Koh, E.D. Sloan, P.V. Hemmingsen, K.J. Kinnari, Z.G. Xu, Predicting hydrate-plug formation in a subsea tieback, SPE Prod. Oper. 24 (4) (2009) 573-578. [119] S.R. Davies, J.A. Boxall, L.E. Dieker, A.K. Sum, C.A. Koh, E.D. Sloan, J.L. Creek, Z.G. Xu, Predicting hydrate plug formation in oil-dominated flowlines, J. Petrol. Sci. Eng. 72 (3-4) (2010) 302-309. [120] Y.K. Ji, T.J. Kneafsey, J. Hou, J.L. Zhao, C.L. Liu, T.K. Guo, B. Wei, E.M. Zhao, Y.J. Bai, Relative permeability of gas and water flow in hydrate-bearing porous media: A micro-scale study by lattice Boltzmann simulation, Fuel 321 (2022) 124013. [121] J.Y. Wu, L.J. Chen, Y.P. Chen, S.T. Lin, Molecular dynamics study on the equilibrium and kinetic properties of tetrahydrofuran clathrate hydrates, J. Phys. Chem. C 119 (3) (2015) 1400-1409. [122] M.C. Zi, D.Y. Chen, H.Q. Ji, G.Z. Wu, Effects of asphaltenes on the formation and decomposition of methane hydrate: A molecular dynamics study, Energy Fuels 30 (7) (2016) 5643-5650. [123] D.X. Zhang, Q.Y. Huang, H.M. Zheng, W. Wang, X.W. Cheng, R.B. Li, W.D. Li, Effect of wax crystals on nucleation during gas hydrate formation, Energy Fuels 33 (6) (2019) 5081-5090. [124] S. Mondal, S. Ghosh, P.K. Chattaraj, A molecular dynamics study on sI hydrogen hydrate, J. Mol. Model. 19 (7) (2013) 2785-2790. [125] N. Wei, W.T. Sun, Y.F. Meng, A.Q. Liu, S.W. Zhou, P. Guo, Q. Fu, X. Lv, Analysis of decomposition for structure I methane hydrate by molecular dynamics simulation, Russ. J. Phys. Chem. A 92 (5) (2018) 840-846. [126] Q.Y. Liao, B.H. Shi, S. Li, S.F. Song, Y.C. Chen, J.J. Zhang, H.Y. Yao, Q.P. Li, J. Gong, Molecular dynamics simulation of the effect of wax molecules on methane hydrate formation, Fuel 297 (2021) 120778. [127] K.Y. Li, R.L. Shi, Y.Y. Huang, L.L. Tang, X.X. Cao, Y. Su, J.J. Zhao, Dissociation mechanism of propane hydrate with methanol additive: A molecular dynamics simulation, Comput. Theor. Chem. 1123 (2018) 79-86. [128] L.H. Wan, D.Q. Liang, J.N. Guan, New insights into decomposition characteristics of nanoscale methane hydrate below the ice point, RSC Adv. 8 (72) (2018) 41397-41403. [129] C. Moon, P.C. Taylor, P.M. Rodger, Molecular dynamics study of gas hydrate formation, J. Am. Chem. Soc. 125 (16) (2003) 4706-4707. [130] C. Moon, P.C. Taylor, P.M. Rodger, Clathrate nucleation and inhibition from a molecular perspective, Can. J. Phys. 81 (1-2) (2003) 451-457. [131] C. Moon, R.W. Hawtin, P.M. Rodger, Nucleation and control of clathrate hydrates: Insights from simulation, Faraday Discuss. 136 (0) (2007) 367-382. [132] J.F. Zhang, R.W. Hawtin, Y. Yang, E. Nakagava, M. Rivero, S.K. Choi, P.M. Rodger, Molecular dynamics study of methane hydrate formation at a water/methane interface, J. Phys. Chem. B 112 (34) (2008) 10608-10618. [133] R.W. Hawtin, D. Quigley, P.M. Rodger, Gas hydrate nucleation and cage formation at a water/methane interface, Phys. Chem. Chem. Phys. 10 (32) (2008) 4853-4864. [134] B.J. Anderson, J.W. Tester, G.P. Borghi, B.L. Trout, Properties of inhibitors of methane hydrate formation via molecular dynamics simulations, J. Am. Chem. Soc. 127 (50) (2005) 17852-17862. [135] B. Wathen, Z. Jia, V.K. Walker, Simulating three-dimensional gas hydrate growth and inhibition, In: 6th International Conference on Gas Hydrates, 2008, Canada. [136] P.M. Rodger, Stability of gas hydrates, J. Phys. Chem. 94 (15) (1990) 6080-6089. [137] T. Miyoshi, M. Imai, R. Ohmura, K. Yasuoka, Thermodynamic stability of type-I and type-II clathrate hydrates depending on the chemical species of the guest substances, J. Chem. Phys. 126 (23) (2007) 234506. [138] S. Alavi, R. Susilo, J.A. Ripmeester, Linking microscopic guest properties to macroscopic observables in clathrate hydrates: Guest-host hydrogen bonding, J. Chem. Phys. 130 (17) (2009) 174501. [139] L.C. Jacobson, W. Hujo, V. Molinero, Nucleation pathways of clathrate hydrates: Effect of guest size and solubility, J. Phys. Chem. B 114 (43) (2010) 13796-13807. [140] A. Phan, H. Schlosser, A. Striolo, Molecular mechanisms by which tetrahydrofuran affects CO2 hydrate Growth: Implications for carbon storage, Chem. Eng. J. 418 (2021) 129423. [141] M.R. Walsh, C.A. Koh, E.D. Sloan, A.K. Sum, D.T. Wu, Microsecond simulations of spontaneous methane hydrate nucleation and growth, Science 326 (5956) (2009) 1095-1098. [142] D.S. Bai, X.R. Zhang, G.J. Chen, W.C. Wang, Replacement mechanism of methane hydrate with carbon dioxide from microsecond molecular dynamics simulations, Energy Environ. Sci. 5 (5) (2012) 7033-7041. [143] M.W. Mahoney, W.L. Jorgensen, A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions, J. Chem. Phys. 112 (20) (2000) 8910-8922. [144] H. Nada, J.P.J.M. van der Eerden, An intermolecular potential model for the simulation of ice and water near the melting point: A six-site model of H2O, J. Chem. Phys. 118 (16) (2003) 7401-7413. [145] J.L. Abascal, E. Sanz, R. Garcia Fernandez, C. Vega, A potential model for the study of ices and amorphous water: TIP4P/Ice, J. Chem. Phys. 122 (23) (2005) 234511. [146] J.L.F. Abascal, C. Vega, A general purpose model for the condensed phases of water: TIP4P/2005, J. Chem. Phys. 123 (23) (2005) 234505. [147] J.J. Potoff, J.I. Siepmann, Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen, AlChE. J. 47 (7) (2001) 1676-1682. [148] J.G. Harris, K.H. Yung, Carbon dioxide’s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model, J. Phys. Chem. 99 (31) (1995) 12021-12024. [149] W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, J. Am. Chem. Soc. 118 (45) (1996) 11225-11236. [150] V. Ballenegger, Cage occupancies in nitrogen clathrate hydrates from Monte Carlo simulations, J. Phys. Chem. C 123 (27) (2019) 16757-16765. [151] Z.Y. Wang, J. Duan, S.J. Chen, Y. Fu, Y.X. Zhang, D. Wang, J.L. Pei, D.D. Liu, Molecular insights into hybrid CH4 physisorption-hydrate growth in hydrophobic metal-organic framework ZIF-8: Implications for CH4 storage, Chem. Eng. J. 430 (2022) 132901. [152] A.Z. Panagiotopoulos, N. Quirke, M. Stapleton, D.J. Tildesley, Phase equilibria by simulation in the Gibbs ensemble, Mol. Phys. 63 (4) (1988) 527-545. [153] D.J. Adams, Grand canonical ensemble Monte Carlo for a Lennard-Jones fluid, Mol. Phys. 29 (1) (1975) 307-311. [154] M. Ferdows, M. Ota, Density of CO2 hydrate by Monte Carlo simulation, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 220 (5) (2006) 691-696. [155] H. Henley, A. Lucia, Constant pressure Gibbs ensemble Monte Carlo simulations for the prediction of structure I gas hydrate occupancy, J. Nat. Gas Sci. Eng. 26 (2015) 446-452. [156] E. Bourasseau, P. Ungerer, A. Boutin, Prediction of equilibrium properties of cyclic alkanes by Monte Carlo SimulationNew anisotropic united atoms intermolecular PotentialNew transfer bias method, J. Phys. Chem. B 106 (21) (2002) 5483-5491. [157] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136 (3B) (1964) B864-B871. [158] E.J. Baerends, Perspective on “Self-consistent equations including exchange and correlation effects”, Theor. Chem. Acc. 103 (3) (2000) 265-269. [159] Richard M. Martin, Electronic structure: Basic theory and practical methods, 2nd edition, Cambridge University Press, 2020, Cambridge. [160] N. Mardirossian, M. Head-Gordon, ωB97X-V: A 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy, Phys. Chem. Chem. Phys. 16 (21) (2014) 9904-9924. [161] H. Chan, B. Narayanan, M.J. Cherukara, F.G. Sen, K. Sasikumar, S.K. Gray, M.K.Y. Chan, S.K.R.S. Sankaranarayanan, Machine learning classical interatomic potentials for molecular dynamics from first-principles training data, J. Phys. Chem. C 123 (12) (2019) 6941-6957. [162] T. Mueller, A. Hernandez, C.H. Wang, Machine learning for interatomic potential models, J. Chem. Phys. 152 (5) (2020) 050902. [163] K.K. Zhao, C.X. Li, X. Xia, K. Fang, B. Yao, F. Yang, Optical techniques for determining wax appearance temperature of waxy crude oil, In: 2021 International Conference on Optical Instruments and Technology: Optoelectronic Measurement Technology and Systems, 2022, China. [164] D. Yang, L.A. Le, R.J. Martinez, R.P. Currier, D.F. Spencer, G. Deppe, Heat transfer during CO2 hydrate formation in a continuous flow reactor, Energy Fuels 22 (4) (2008) 2649-2659. [165] D.L. Yang, L.A. Le, R.J. Martinez, R.P. Currier, D.F. Spencer, Kinetics of CO2 hydrate formation in a continuous flow reactor, Chem. Eng. J. 172 (1) (2011) 144-157. [166] C.G. Xu, Z.Y. Chen, J. Cai, X.S. Li, Study on pilot-scale CO2 separation from flue gas by the hydrate method, Energy Fuels 28 (2) (2014) 1242-1248. [167] C.G. Xu, Y.S. Yu, W.J. Xie, Z.M. Xia, Z.Y. Chen, X.S. Li, Study on developing a novel continuous separation device and carbon dioxide separation by process of hydrate combined with chemical absorption, Appl. Energy 255 (2019) 113791. [168] S.H. Park, G. Sposito, Do montmorillonite surfaces promote methane hydrate formation? Monte Carlo and molecular dynamics simulations, J. Phys. Chem. B 107 (10) (2003) 2281-2290. [169] M.S. Barhaghi, B. Crawford, G. Schwing, D.J. Hardy, J.E. Stone, L. Schwiebert, J. Potoff, E. Tajkhorshid, Py-MCMD: Python software for performing hybrid Monte Carlo/molecular dynamics simulations with GOMC and NAMD, J. Chem. Theory Comput. 18 (8) (2022) 4983-4994. |
[1] | Zhiwei Zhu, Minglei Yang, Wangli He, Renchu He, Yunmeng Zhao, Feng Qian. A deep reinforcement learning approach to gasoline blending real-time optimization under uncertainty[J]. 中国化学工程学报, 2024, 71(7): 183-192. |
[2] | Jiarui Liang, Yong Tian, Shutong Yang, Yong Wang, Ruiqi Yin, Yufei Wang. Long-term operation optimization of circulating cooling water systems under fouling conditions[J]. 中国化学工程学报, 2024, 65(1): 255-267. |
[3] | Jixiang Liu, Xin Zhou, Gengfei Yang, Hui Zhao, Zhibo Zhang, Xiang Feng, Hao Yan, Yibin Liu, Xiaobo Chen, Chaohe Yang. Conceptual carbon-reduction process design and quantitative sustainable assessment for concentrating high purity ethylene from wasted refinery gas[J]. 中国化学工程学报, 2023, 57(5): 290-308. |
[4] | Yao Wang, Qing Ye, Jinlong Li, Qingqing Rui, Azhi Yu. Economic and entropy production evaluation of extractive distillation and solvent-assisted pressure-swing distillation by multi-objective optimization[J]. 中国化学工程学报, 2023, 63(11): 246-259. |
[5] | Peiyu Zhao, Guojie Zhang, Huangyu Yan, Yuqiong Zhao. The latest development on amine functionalized solid adsorbents for post-combustion CO2 capture: Analysis review[J]. 中国化学工程学报, 2021, 35(7): 17-43. |
[6] | Fangfang Li, Francesca Mocci, Xiangping Zhang, Xiaoyan Ji, Aatto Laaksonen. Ionic liquids for CO2 electrochemical reduction[J]. 中国化学工程学报, 2021, 29(3): 75-93. |
[7] | Yanping Duan, Pengfei Wang, Wenge Yang, Xia Zhao, Hong Hao, Ruijie Wu, Jie Huang. Experimental and density functional theory computational evaluation of poly(N-vinyl caprolactam-co-butyl methacrylate) kinetic hydrate inhibitors[J]. 中国化学工程学报, 2021, 40(12): 237-244. |
[8] | Sheshan Bhimrao Meshram, Omkar S Kushwaha, Palle Ravinder Reddy, Gaurav Bhattacharjee, Rajnish Kumar. Investigation on the effect of oxalic acid, succinic acid and aspartic acid on the gas hydrate formation kinetics[J]. 中国化学工程学报, 2019, 27(9): 2148-2156. |
[9] | Andrey Oliveira de Souza, Aurélio Moreira Luiz, Antônio Tavernard Pereira Neto, Antônio Carlos Brandao de Araujo, Heleno Bispo da Silva, Sidinei Kebler da Silva, Jose Jailson Nicacio Alves. CFD predictions for hazardous area classification[J]. Chinese Journal of Chemical Engineering, 2019, 27(1): 21-31. |
[10] | Basim O. Hasan. Breakage of drops and bubbles in a stirred tank:A review of experimental studies[J]. , 2017, 25(6): 698-711. |
[11] | 朱玉俊, 周建海, 胡军, 刘洪来, 胡英. Computer Simulation of Adsorption and Separation of CO2/CH4 in Modified COF-102[J]. Chinese Journal of Chemical Engineering, 2011, 19(5): 709-716. |
[12] | 侯卫锋, 苏宏业, 胡永有, 褚健. 工业级催化重整装置的全流程模拟与优化[J]. , 2006, 14(5): 584-591. |
[13] | Jan-Christer Janson . 大型蛋白质色谱柱及凝胶介质的综述[J]. , 2002, 10(6): 690-695. |
[14] | 袁红, 高广图, 曾晓成. EFFECTS OF MOLECULAR SIZE AND COMBINATION RULE ON LOCAL COMPOSITION[J]. , 1996, 4(4): 365-371. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||