[1] N. Quintana, F. Van der Kooy, M.D. Van de Rhee, G.P. Voshol, R. Verpoorte, Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering, Appl. Microbiol. Biotechnol. 91 (3) (2011) 471-490. [2] M. Mehdizadeh Allaf, H. Peerhossaini, Cyanobacteria: model microorganisms and beyond, Microorganisms 10 (4) (2022) 696. [3] C. Halfmann, L.P. Gu, W. Gibbons, R.B. Zhou, Genetically engineering cyanobacteria to convert CO2, water, and light into the long-chain hydrocarbon farnesene, Appl. Microbiol. Biotechnol. 98 (23) (2014) 9869-9877. [4] S. Roussou, A. Albergati, F.Y. Liang, P. Lindblad, Engineered cyanobacteria with additional overexpression of selected Calvin-Benson-Bassham enzymes show further increased ethanol production, Metab. Eng. Commun. 12 (2021) e00161. [5] R. Miao, H. Xie, F.M. Ho, P. Lindblad, Protein engineering of α-ketoisovalerate decarboxylase for improved isobutanol production in Synechocystis PCC 6803, Metab. Eng. 47 (2018) 42-48. [6] S. Gudmundsson, J. Nogales, Cyanobacteria as photosynthetic biocatalysts: a systems biology perspective, Mol. Biosyst. 11 (1) (2015) 60-70. [7] P.K. Babele, J. Kumar, V. Chaturvedi, Proteomic de-regulation in cyanobacteria in response to abiotic stresses, Front. Microbiol. 10 (2019) 1315. [8] M. Muramatsu, Y. Hihara, Acclimation to high-light conditions in cyanobacteria: from gene expression to physiological responses, J. Plant Res. 125 (1) (2012) 11-39. [9] K. Ogawa, K. Yoshikawa, F. Matsuda, Y. Toya, H. Shimizu, Transcriptome analysis of the cyanobacterium Synechocystis sp. PCC 6803 and mechanisms of photoinhibition tolerance under extreme high light conditions, J. Biosci. Bioeng. 126 (5) (2018) 596-602. [10] M. Dann, E.M. Ortiz, M. Thomas, A. Guljamow, M. Lehmann, H. Schaefer, D. Leister, Enhancing photosynthesis at high light levels by adaptive laboratory evolution, Nat. Plants 7 (5) (2021) 681-695. [11] B. Nowicka, Heavy metal-induced stress in eukaryotic algae-mechanisms of heavy metal toxicity and tolerance with particular emphasis on oxidative stress in exposed cells and the role of antioxidant response, Environ. Sci. Pollut. Res. Int. 29 (12) (2022) 16860-16911. [12] D. Kalaivanan, A.N. Ganeshamurthy, Mechanisms of Heavy Metal Toxicity in Plants. Rao N, Shivashankara K, Laxman R, Abiotic Stress Physiology of Horticultural Crops. New Delhi: Springer, 2016: 85-102. [13] H. Kupper, E. Andresen, Mechanisms of metal toxicity in plants, Metallomics 8 (3) (2016) 269-285. [14] S.Z. Wang, R. Wufuer, J. Duo, W.F. Li, X.L. Pan, Cadmium caused different toxicity to photosystem I and photosystem II of freshwater unicellular algae chlorella pyrenoidosa (chlorophyta), Toxics 10 (7) (2022) 352. [15] C.X. Xu, T. Sun, S.B. Li, L. Chen, W.W. Zhang, Adaptive laboratory evolution of cadmium tolerance in Synechocystis sp. PCC 6803, Biotechnol. Biofuels 11 (1) (2018) 205. [16] T. Sun, L. Xu, L.N. Wu, Z.D. Song, L. Chen, W.W. Zhang, Identification of a new target slr0946 of the response regulator Sll0649 involving cadmium tolerance in Synechocystis sp. PCC 6803, Front. Microbiol. 8 (2017) 1582. [17] R. Mittler, Abiotic stress, the field environment and stress combination, Trends Plant Sci. 11 (1) (2006) 15-19. [18] N. Murata, S. Takahashi, Y. Nishiyama, S.I. Allakhverdiev, Photoinhibition of photosystem II under environmental stress, Biochim. Biophys. Acta 1767 (6) (2007) 414-421. [19] Y. Yamamoto, R. Aminaka, M. Yoshioka, M. Khatoon, K. Komayama, D. Takenaka, A. Yamashita, N. Nijo, K. Inagawa, N. Morita, T. Sasaki, Y. Yamamoto, Quality control of photosystem II: impact of light and heat stresses, Photosynth. Res. 98 (1-3) (2008) 589-608. [20] M.P.V.V.B. Singh, S.M. Prasad, V.P. Singh, M. Singh, Antioxidant system against active oxygen species in cyanobacterium aphanothece stagnina: response to excess light under cadmium stress, Proc. Natl. Acad. Sci. India B Biol. Sci. 85 (2) (2015) 535-543. [21] J. Du, B. Qiu, M. Pedrosa Gomes, P. Juneau, G. Dai, Influence of light intensity on cadmium uptake and toxicity in the cyanobacteria Synechocystis sp. PCC6803, Aquat. Toxicol. 211 (2019) 163-172. [22] D. Kaczmarzyk, J. Anfelt, A. Sarnegrim, E.P. Hudson, Overexpression of sigma factor SigB improves temperature and butanol tolerance of Synechocystis sp. PCC6803, J. Biotechnol. 182-183 (2014) 54-60. [23] T. Sun, S.B. Li, X.Y. Song, G.S. Pei, J.J. Diao, J.Y. Cui, M.L. Shi, L. Chen, W.W. Zhang, re-direction of carbon flux to key precursor malonyl-CoA via artificial small RNAs in photosynthetic Synechocystis sp. PCC 6803, Biotechnol. Biofuels 11 (2018) 26. [24] Y.P. Wu, D.W. Krogmann, The orange carotenoid protein of Synechocystis PCC 6803, Biochim. Biophys. Acta 1322 (1) (1997) 1-7. [25] O. Sozer, J. Komenda, B. Ughy, I. Domonkos, H. Laczko-Dobos, P. Malec, Z. Gombos, M. Kis, Involvement of carotenoids in the synthesis and assembly of protein subunits of photosynthetic reaction centers of Synechocystis sp. PCC 6803, Plant Cell Physiol. 51 (5) (2010) 823-835. [26] J. Nielsen, It is all about MetabolicFluxes, J. Bacteriol. 185 (24) (2003) 7031-7035. [27] T. Obata, A.R. Fernie, The use of metabolomics to dissect plant responses to abiotic stresses, Cell. Mol. Life Sci. 69 (19) (2012) 3225-3243. [28] V. Shulaev, D. Cortes, G. Miller, R. Mittler, Metabolomics for plant stress response, Physiol. Plantarum 132 (2) (2008) 199-208. [29] A. Srivastava, S. Biswas, S. Yadav, S. Kumar, V. Srivastava, Y. Mishra, Acute cadmium toxicity and post-stress recovery: insights into coordinated and integrated response/recovery strategies of Anabaena sp. PCC 7120, J. Hazard Mater. 411 (2021) 124822. [30] P.P. Zhang, N. Battchikova, T. Jansen, J. Appel, T. Ogawa, E.M. Aro, Expression and functional roles of the two distinct NDH-1 complexes and the carbon acquisition complex NdhD3/NdhF3/CupA/Sll1735 in Synechocystis sp PCC 6803, Plant Cell 16 (12) (2004) 3326-3340. [31] S.M.E. Daley, A.D. Kappell, M.J. Carrick, R.L. Burnap, Regulation of the cyanobacterial CO2-concentrating mechanism involves internal sensing of NADP+ and α-ketogutarate levels by transcription factor CcmR, PLoS One 7 (7) (2012) e41286. [32] A.P. Eker, P. Kooiman, J.K. Hessels, A. Yasui, DNA photoreactivating enzyme from the cyanobacterium Anacystis nidulans, J. Biol. Chem. 265 (14) (1990) 8009-8015. [33] U. Fels, K. Gevaert, P. van Damme, Bacterial genetic engineering by means of recombineering for reverse genetics, Front. Microbiol. 11 (2020) 548410. [34] N.J. Atkinson, P.E. Urwin, The interaction of plant biotic and abiotic stresses: from genes to the field, J. Exp. Bot. 63 (10) (2012) 3523-3543. [35] S. Rasmussen, P. Barah, M.C. Suarez-Rodriguez, S. Bressendorff, P. Friis, P. Costantino, A.M. Bones, H.B. Nielsen, J. Mundy, Transcriptome responses to combinations of stresses in Arabidopsis, Plant Physiol. 161 (4) (2013) 1783-1794. [36] W.J. Lou, X.M. Tan, K. Song, S.S. Zhang, G.D. Luan, C. Li, X.F. Lu, A specific single nucleotide polymorphism in the ATP synthase gene significantly improves environmental stress tolerance of synechococcus elongatus PCC 7942, Appl. Environ. Microbiol. 84 (18) (2018) e01222-e01218. [37] G. Bernat, J. Appel, T. Ogawa, M. Rogner, Distinct roles of multiple NDH-1 complexes in the cyanobacterial electron transport network as revealed by kinetic analysis of P700+ reduction in various Ndh-deficient mutants of Synechocystis sp. strain PCC6803, J. Bacteriol. 193 (1) (2011) 292-295. [38] T. Zeller, G. Klug, Thioredoxins in bacteria: functions in oxidative stress response and regulation of thioredoxin genes, Naturwissenschaften 93 (6) (2006) 259-266. [39] F. Rollin-Genetet, C. Berthomieu, A.H. Davin, E. Quemeneur, Escherichia coli thioredoxin inhibition by cadmium: two mutually exclusive binding sites involving Cys32 and Asp26, Eur. J. Biochem. 271 (7) (2004) 1299-1309. [40] M. Muthusamy, J.H. Kim, J.A. Kim, S.I. Lee, Plant RNA binding proteins as critical modulators in drought, high salinity, heat, and cold stress responses: an updated overview, Int. J. Mol. Sci. 22 (13) (2021) 6731. [41] C. Greening, F.H. Ahmed, A.E. Mohamed, B.M. Lee, G. Pandey, A.C. Warden, C. Scott, J.G. Oakeshott, M.C. Taylor, C.J. Jackson, Physiology, biochemistry, and applications of F420- and fo-dependent redox reactions, Microbiol. Mol. Biol. Rev. 80 (2) (2016) 451-493. [42] B.N.P. Kumar, S. Mahaboobi, S. Satyam, Cyanobacteria: a potential natural source for drug discovery and bioremediation, Ind. Pollut. Control 32 (2) (2016) 508-517. [43] R. Mota, F. Rossi, L. Andrenelli, S.B. Pereira, R. De Philippis, P. Tamagnini, Released polysaccharides (RPS) from Cyanothece sp. CCY 0110 as biosorbent for heavy metals bioremediation: interactions between metals and RPS binding sites, Appl. Microbiol. Biotechnol. 100 (17) (2016) 7765-7775. [44] S. Ozturk, B. Aslim, Z. Suludere, Cadmium(II) sequestration characteristics by two isolates of Synechocystis sp. in terms of exopolysaccharide (EPS) production and monomer composition, Bioresour. Technol. 101 (24) (2010) 9742-9748. [45] L. Shen, Z.F. Li, J.J. Wang, A.J. Liu, Z.H. Li, R.L. Yu, X.L. Wu, Y.D. Liu, J.K. Li, W.M. Zeng, Characterization of extracellular polysaccharide/protein contents during the adsorption of Cd(II) by Synechocystis sp. PCC6803, Environ. Sci. Pollut. Res. Int. 25 (21) (2018) 20713-20722. |