中国化学工程学报 ›› 2025, Vol. 86 ›› Issue (10): 1-12.DOI: 10.1016/j.cjche.2025.06.013
• Special Issue on Celebrating the 100th Anniversary of the School of Chemical Engineering and Technology of Tianjin University • 下一篇
Yun Shuai1,2, Zhengliang Huang2, Wei Li1,2,3, Jingdai Wang1,2,3, Yongrong Yang1,2,3
收稿日期:2025-03-28
修回日期:2025-06-24
接受日期:2025-06-25
出版日期:2025-10-28
发布日期:2025-07-21
通讯作者:
Wei Li,E-mail:liwei2021@zju.edu.cn
基金资助:Yun Shuai1,2, Zhengliang Huang2, Wei Li1,2,3, Jingdai Wang1,2,3, Yongrong Yang1,2,3
Received:2025-03-28
Revised:2025-06-24
Accepted:2025-06-25
Online:2025-10-28
Published:2025-07-21
Contact:
Wei Li,E-mail:liwei2021@zju.edu.cn
Supported by:摘要: Microbubbles have been widely used in the chemical industry in recent years due to their unique physical and chemical properties. This article provides an overview of the characteristics and main generation methods of microbubbles, including physical, chemical, mechanical, and microfluidic techniques. It also explores the applications of microbubbles in the chemical industry, such as gas-liquid reaction intensification, gas separation, mineral flotation, and preparation of high-performance polyolefin materials. By analyzing the current research status of microbubble technology, the future development direction of its application in the chemical industry is discussed.
Yun Shuai, Zhengliang Huang, Wei Li, Jingdai Wang, Yongrong Yang. Microbubble technology and its application in chemical industry[J]. 中国化学工程学报, 2025, 86(10): 1-12.
Yun Shuai, Zhengliang Huang, Wei Li, Jingdai Wang, Yongrong Yang. Microbubble technology and its application in chemical industry[J]. Chinese Journal of Chemical Engineering, 2025, 86(10): 1-12.
| [1] B.Q. Xie, W. Liu, Y.F. Jiang, J.X. Chen, C.J. Zhou, J.S. Zhang, Hydrodynamics and model of gas-liquid flow in microbubble column reactors, AIChE J. 70 (2) (2024) e18273. [2] Z.E. Huang, X.Y. Xiang, B. Jiang, C.Y. Zhu, X.B. Cui, Y.G. Ma, T.T. Fu, Mass transfer of gas-liquid two-phase flow in asymmetric parallel microchannels with liquid feed splitting, AIChE J. 70 (10) (2024) e18527. [3] W.Z. Gu, Y. Jin, M.L. Gu, L.Q. Wu, Investigation on the multi-scale interactions in gas-liquid jet bubbling reactor, Chem. Eng. Sci. 301 (2025) 120676. [4] J.W. Zhang, Z. Chen, J.H. Xu, The gas-liquid mass transfer and pressure drop behaviors of the gas-liquid-liquid three-phase flow in micro-packed beds, AIChE J. 71 (1) (2025) e18554. [5] A.P. Porta, E. Erdem, J.M. Woodley, Tools to investigate oxygen-related challenges with flavin-dependent enzymes, Arch. Biochem. Biophys. 764 (2025) 110246. [6] J.J. Wang, L. Sheng, J. Deng, G.S. Luo, Fast reliable determination of gas-liquid mass transfer in micropacked beds via in-line direct measuring of pressure drop, Ind. Eng. Chem. Res. 63 (49) (2024) 21404-21416. [7] X. Zhang, Y.Q. Sun, X.Y. Cui, Y.W. Xiang, Z.Y. Tang, H.K. Zou, B.J. Wang, Y. Luo, Hydrogenation process intensification of 2-nitro-4-acetylamino anisole by HiGee technology, Chem. Eng. Process. Process. Intensif. 205 (2024) 110020. [8] J.L. Zhu, H. Cao, H. Wang, S.S. Zhang, Y.X. Li, X.C. Ge, J.Q. Luo, Simulation analysis of gas-liquid flow and mass transfer in a shaking triethylene glycol dewatering absorber, Nat. Gas Ind. B 11 (4) (2024) 420-431. [9] G.L. Wang, J. Li, Y.B. Wang, Y. Jin, Investigating the dispersion characteristics of high-viscosity gas-liquid systems in capillary-embedded ultrasonic microreactors, Ind. Eng. Chem. Res. 64 (1) (2025) 868-878. [10] N.D. Jin, H.W. Lu, J.C. Zhang, W.K. Ren, Characterization of bubble size of gas-liquid two-phase flow using ultrasonic signals, IEEE Sens. J. 24 (10) (2024) 16867-16874. [11] S.P. Evgenidis, T.D. Karapantsios, Increase of gas-liquid interfacial area in bubbly flows by pulsating flow conditions, Chem. Eng. J. 486 (2024) 150107. [12] J. Gan, H.Z. Liu, Y.P. Wei, J.J. Chen, X.Y. Li, Z. Jiang, G.L. Li, H. Li, K.Q. Chen, Bubble diameter, mass transfer, and bioreaction of dynamic membrane-stirred reactors, Ind. Eng. Chem. Res. 63 (4) (2024) 1760-1772. [13] Y.Z. Cui, C.X. Li, L.X. Zhai, S.Y. Liu, X.G. Shi, J.S. Gao, X.Y. Lan, Comparative study on the flow and mass transfer characteristics of submillimeter bubbles and conventional bubbles in gas-liquid two-phase flow, CIESC J. 75 (1) (2024) 197-210. [14] X.Q. Wang, Z.Q. Wen, X.B. Zhang, H. Li, Z.H. Luo, Numerical simulation of mass transfer characteristics of gas-liquid bubble columns and an improved mass transfer model, Ind. Eng. Chem. Res. 63 (18) (2024) 8473-8486. [15] F. Alberini, F. Nerini, N. Mandolini, F. Maluta, A. Paglianti, N. Di Pasquale, G. Montante, On the reliability of image analysis for bubble size distribution measurements in electrolyte solutions in stirred reactors, Chem. Eng. J. Adv. 20 (2024) 100658. [16] C. Zhang, Y.Z. Liu, W.Z. Jiao, H.Y. Shen, X.G. Yuan, S.K. Jia, An optimization method for enhancement of gas-liquid mass transfer in a bubble column reactor based on the entropy generation extremum principle, Chin. J. Chem. Eng. 53 (2023) 83-88. [17] H.D. Zhang, M. Pang, W.Y. Yang, L. Sang, Z.P. Zhao, Controllable wettability on Ni foam with PDA coatings and gas-liquid mass transfer enhancement in micropacked bed reactors, Chem. Eng. Sci. 302 (2025) 120892. [18] X. Xu, L. Wang, H.L. Wang, H.L. Liu, Q. Yang, Circulating jet for enhancing the mass transfer in a gas-liquid stirred tank reactor, AIChE J. 68 (1) (2022) e17392. [19] H.B. Wang, T. Zhou, S.P. Han, L. Duan, L. Sang, Z.P. Zhao, Hydrodynamics and mass transfer enhancement of gas-liquid flow in micropacked bed reactors: Effect of contact angle, AIChE J. 69 (2) (2023) e17846. [20] H. Zhang, N.J. Song, T. Yu, C. Qu, Process intensification in gas-liquid mass transfer by modification of reactor design: A review, Energy Technol. 11 (7) (2023) 2201495. [21] A. Heidarian, B.H. Sun, J. Soria, Effects of nozzle size and surface hydrophobicity on microbubble generation, Phys. Fluids 37 (1) (2025) 012012. [22] F. Yuan, X. Zhao, Z.H. Wu, Y.L. Ding, Q. Yang, Washing performance of microbubbles on porous media, J. Water Process. Eng. 58 (2024) 104761. [23] H.J. Min, L. Bau, S.J. Payne, E.P. Stride, Behavior of microbubbles on air-aqueous interfaces, Langmuir 40 (44) (2024) 23259-23267. [24] H.Y. Zhao, A. Helgason, R. Leng, S. Chowdhury, N. Clermont, J. Dinh, R. Aldebasi, X.H. Zhang, M. Gattrell, J. Lockhart, H. Hamza, Removal of microplastics/microfibers and detergents from laundry wastewater by microbubble flotation, ACS ES&T Water 4 (4) (2024) 1819-1833. [25] S. Wang, W.C. Pan, H.J. Zhang, H. Chen, R. Chen, Continuous flow wastewater induced plasma microbubbles for the enhancement of mass transfer and degradation of dye pollutants in a bubble column reactor, Chem. Eng. Process. Process. Intensif. 211 (2025) 110245. [26] A. John, A. Brookes, I. Carra, B. Jefferson, P. Jarvis, Microbubbles and their application to ozonation in water treatment: A critical review exploring their benefit and future application, Crit. Rev. Environ. Sci. Technol. 52 (9) (2022) 1561-1603. [27] J.H. Liang, Y. Fei, Y.H. Yin, Q. Han, Y.Z. Liu, L. Feng, L.Q. Zhang, Advancements in wastewater treatment: A comprehensive review of ozone microbubbles technology, Environ. Res. 266 (2025) 120469. [28] Z.Y. Chang, S.S. Niu, Z.C. Shen, L.C. Zou, H.J. Wang, Latest advances and progress in the microbubble flotation of fine minerals: Microbubble preparation, equipment, and applications, Int. J. Miner. Metall. Mater. 30 (7) (2023) 1244-1260. [29] Z. Wang, H.F. Cong, X.G. Li, L. Yang, F. Liu, K.L. Liu, Simulation study on the flow and mass transfer processes of CO2 absorption by co-current flow of amine droplets and microbubbles, Chem. Eng. J. 507 (2025) 160390. [30] H. Shen, Y.Y. Xu, J.G. An, B.W. Jiang, J.N. Sun, G.Q. Yang, Z.B. Zhang, Micro-interface enhanced mass transfer sodium carbonate absorption carbon dioxide reaction, Chin. J. Chem. Eng. 64 (2023) 208-223. [31] J. Dong, J.K. Yao, J.L. Tao, X.P. Shi, F. Wei, Degradation of methyl orange by ozone microbubble process with packing in the bubble column reactor, Environ. Technol. 44 (17) (2023) 2512-2524. [32] M. Zhang, J.Y. Liu, L.F. Tang, N. Hu, D.Y. Zhang, X.L. Pan, Fenton micro-reactor on a bubble: A novel microbubble-triggered simultaneous capture and catalytic oxidation strategy for recalcitrant organic pollutant removal, 835 (2022) 155556. [33] B.Q. Xie, W. Liu, C.H. Zhang, Y. Chen, W.Y. Ma, J.S. Zhang, Gas-liquid mass transfer in microbubble column reactors, Chem. Eng. Process. Process. Intensif. 202 (2024) 109858. [34] Y. Chang, Q.C. Shang, L. Sheng, J. Deng, G.S. Luo, Gas-liquid countercurrent flow characteristics in a microbubble column reactor, Chem. Eng. Sci. 300 (2024) 120573. [35] X.Y. Wang, Y.L. Zhu, Y. Shuai, Y. Yang, Z.L. Huang, J.D. Wang, Y.R. Yang, Bubble size “bimodal” distribution enhances mixing and mass transfer in slurry bubbling column reactor, Ind. Eng. Chem. Res. 63 (16) (2024) 7401-7414. [36] R. Parmar, S.K. Majumder, Microbubble generation and microbubble-aided transport process intensification: A state-of-the-art report, Chem. Eng. Process. Process. Intensif. 64 (2013) 79-97. [37] L. Yang, C.H. Liao, Y.Z. Zhu, H.J. Chen, Q.F. Jin, Characteristics of micro-bubble and nano-bubble and their application in environmental pollution control, Chem. Ind. Eng. Prog. 31 (6) (2012) 1333-1337. [38] J.M. Wan, S. Veerapaneni, F. Gadelle, T.K. Tokunaga, Generation of stable microbubbles and their transport through porous media, Water Resour. Res. 37 (5) (2001) 1173-1182. [39] Z. Gao, W.X. Wu, W.T. Sun, B. Wang, Understanding the stabilization of a bulk nanobubble: A molecular dynamics analysis, Langmuir 37 (38) (2021) 11281-11291. [40] E.D. Michailidi, G. Bomis, A. Varoutoglou, E.K. Efthimiadou, A.C. Mitropoulos, E.P. Favvas, Fundamentals and applications of nanobubbles, Interface Sci. Technol. 30 (2019) 69-99. [41] H.A. Oliveira, A.C. Azevedo, R. Etchepare, J. Rubio, Separation of emulsified crude oil in saline water by flotation with micro- and nanobubbles generated by a multiphase pump, Water Sci. Technol. 76 (9-10) (2017) 2710-2718. [42] K. Ohgaki, N.Q. Khanh, Y. Joden, A. Tsuji, T. Nakagawa, Physicochemical approach to nanobubble solutions, Chem. Eng. Sci. 65 (3) (2010) 1296-1300. [43] R.C. Tolman, The effect of droplet size on surface tension, J. Chem. Phys. 17 (3) (1949) 333-337. [44] S.H. Park, J.G. Weng, C.L. Tien, A molecular dynamics study on surface tension of microbubbles, Int. J. Heat Mass Transf. 44 (10) (2001) 1849-1856. [45] C. Fradin, A. Braslau, D. Luzet, D. Smilgies, M. Alba, N. Boudet, K. Mecke, J. Daillant, Reduction in the surface energy of liquid interfaces at short length scales, Nature 403 (2000) 871-874. [46] A. Brotchie, F. Grieser, M. Ashokkumar, Effect of power and frequency on bubble-size distributions in acoustic cavitation, Phys. Rev. Lett. 102 (8) (2009) 084302. [47] Y.J. Ho, H.C. Hsu, S.T. Kang, C.H. Fan, C.W. Chang, C.K. Yeh, Ultrasonic transdermal delivery system with acid-base neutralization-generated CO2 microbubble cavitation, ACS Appl. Bio Mater. 3 (4) (2020) 1968-1975. [48] J.D. He, Z.N. Liu, X.H. Zhu, H.Z. Xia, H.L. Gao, J. Lu, Ultrasonic microbubble cavitation enhanced tissue permeability and drug diffusion in solid tumor therapy, Pharmaceutics 14 (8) (2022) 1642. [49] M.F. Zhou, F. Cavalieri, F. Caruso, M. Ashokkumar, Confinement of acoustic cavitation for the synthesis of protein-shelled nanobubbles for diagnostics and nucleic acid delivery, ACS Macro Lett. 1 (7) (2012) 853-856. [50] K. Terasaka, A. Hirabayashi, T. Nishino, S. Fujioka, D. Kobayashi, Development of microbubble aerator for waste water treatment using aerobic activated sludge, Chem. Eng. Sci. 66 (14) (2011) 3172-3179. [51] X.Y. Liu, M. Lei, Z.W. Wang, S.H. Yuan, Q. Li, Z.B. Wang, Hydrodynamics and mass transfer performance of microbubble flow in the bubble column with a contraction section, Chem. Eng. Res. Des. 205 (2024) 91-106. [52] G.D. Ding, J.Q. Chen, P.B. Yang, Z.X. Feng, T.T. Sun, Y. Sun, Y.P. Ji, X.L. Cai, Study on the gas dissolution performance and bubble generation characteristics of a jet flow type pressurized tubular microbubble generator, Sep. Purif. Technol. 356 (2025) 129886. [53] A. Lucero, D.S. Kim, Y.S. Park, Parameter optimization for cost reduction of microbubble generation by electrolysis, J. Environ. Sci. Int. 26 (3) (2017) 269-280. [54] Y. Achaoui, K. Metwally, D. Fouan, Z. Hammadi, R. Morin, E. Debieu, C. Payan, S. Mensah, Tunable microbubble generator using electrolysis and ultrasound, AIP Adv. 7 (1) (2017) 015011. [55] V.B. Svetovoy, A.V. Prokaznikov, A.V. Postnikov, I.V. Uvarov, G. Palasantzas, Explosion of microbubbles generated by the alternating polarity water electrolysis, Energies 13 (1) (2020) 20. [56] T.M. Lucas, C.K. Harnett, Control of electrolysis-generated microbubbles for sensor surface passivation, Appl. Phys. Lett. 98 (1) (2011) 011915. [57] Z.X. Li, H.B. Zeng, X.H. Zhang, Growth rates of hydrogen microbubbles in reacting femtoliter droplets, Langmuir 38 (21) (2022) 6638-6646. [58] J.K. Perng, S. Lee, K. Kundu, C.F. Caskey, S.F. Knight, S. Satir, K.W. Ferrara, W.R. Taylor, F.L. Degertekin, D. Sorescu, N. Murthy, Ultrasound imaging of oxidative stress in vivo with chemically-generated gas microbubbles, Ann. Biomed. Eng. 40 (9) (2012) 2059-2068. [59] S.L. Chen, C.T. Lin, C. Pan, C.C. Chieng, F.G. Tseng, Growth and detachment of chemical reaction-generated micro-bubbles on micro-textured catalyst, Microfluid. Nanofluid. 7 (6) (2009) 807-818. [60] A.K.A. Ahmed, C.Z. Sun, L.K. Hua, Z.B. Zhang, Y.H. Zhang, W. Zhang, T. Marhaba, Generation of nanobubbles by ceramic membrane filters: The dependence of bubble size and zeta potential on surface coating, pore size and injected gas pressure, Chemosphere 203 (2018) 327-335. [61] M. Kukizaki, M. Goto, Size control of nanobubbles generated from Shirasu-porous-glass (SPG) membranes, J. Membr. Sci. 281 (1-2) (2006) 386-396. [62] X.Y. Li, Y.G. Duan, H.L. Wang, J.C. Cheng, C. Yang, Internal optimization for enhancing the microbubble dispersion characteristics of a stirred tank, Ind. Eng. Chem. Res. 61 (45) (2022) 16815-16822. [63] G.L. Li, H. Li, G.G. Wei, X. He, S. Xu, K.Q. Chen, P.K. Ouyang, X.J. Ji, Hydrodynamics, mass transfer and cell growth characteristics in a novel microbubble stirred bioreactor employing sintered porous metal plate impeller as gas sparger, Chem. Eng. Sci. 192 (2018) 665-677. [64] X.Y. Li, P.P. Li, L.Z. Zu, C. Yang, Gas-liquid mass transfer characteristics with microbubble aeration-I. Standard stirred tank, Chem. Eng. Technol. 39 (5) (2016) 945-952. [65] L. Jiang, L.H. Wang, H.L. Liao, W.T. Jiang, Q. Luo, G.W. Chu, Y. Luo, HiGee microbubble generator: (II) Controllable preparation of microbubbles, Ind. Eng. Chem. Res. 61 (45) (2022) 16832-16842. [66] Q. Luo, L.H. Wang, W.T. Jiang, C.H. Li, Y. Luo, H.K. Zou, J.F. Chen, Flow behavior and size characteristics of microbubble swarm in a HiGee-aided fixed bed reactor with different packed structures, Chem. Eng. Sci. 291 (2024) 119960. [67] L. Jiang, L.H. Wang, Y.W. Liu, H.K. Zou, G.W. Chu, Y. Luo, HiGee microbubble generator: (I) Mathematical modeling and experimental verification of the energy dissipation rate, Ind. Eng. Chem. Res. 61 (45) (2022) 16823-16831. [68] H.L. Liao, L. Jiang, L.H. Wang, Y. Luo, Q.F. Tan, S.T. Ma, J.F. Chen, Hydrodynamics, mass transfer, and hydrogenation performance of a HiGee-aided fixed bed reactor, AIChE J. 70 (5) (2024) e18384. [69] J. Ruan, H. Zhou, Z.M. Ding, Y.H. Zhang, L. Zhao, J. Zhang, Z.Y. Tang, Machine learning-aided characterization of microbubbles for Venturi bubble generator, Chem. Eng. J. 465 (2023) 142763. [70] X.Z. Li, Z.L. Jiang, Y.L. Guo, J. Xu, W.W. Guo, Z.L. Ding, Research on the characteristics of a new microbubble generator based on the Venturi tube, Chem. Eng. Process. Process. Intensif. 203 (2024) 109876. [71] Y. Zhou, J.Y. Cui, Z. Chen, J.C. Liu, L.P. He, W. Fan, M.X. Huo, Parametric analysis of Venturi-type microbubble generator and the bubble fragmentation dynamics, Desalin. Water Treat. 322 (2025) 101116. [72] J.J. Li, Y.C. Song, J.L. Yin, D.Z. Wang, Investigation on the effect of geometrical parameters on the performance of a Venturi type bubble generator, Nucl. Eng. Des. 325 (2017) 90-96. [73] L.C. Sun, Z.Y. Mo, L. Zhao, H.T. Liu, X. Guo, X.F. Ju, J.J. Bao, Characteristics and mechanism of bubble breakup in a bubble generator developed for a small TMSR, Ann. Nucl. Energy 109 (2017) 69-81. [74] S.I. Uesawa, A. Kaneko, Y. Nomura, Y. Abe, Study on bubble breakup behavior in a Venturi tube, Multiph. Sci. Technol. 24 (3) (2012) 257-277. [75] M. Sadatomi, A. Kawahara, K. Kano, A. Ohtomo, Performance of a new micro-bubble generator with a spherical body in a flowing water tube, Exp. Therm. Fluid Sci. 29 (5) (2005) 615-623. [76] M. Sadatomi, A. Kawahara, H. Matsuura, S. Shikatani, Micro-bubble generation rate and bubble dissolution rate into water by a simple multi-fluid mixer with orifice and porous tube, Exp. Therm. Fluid Sci. 41 (2012) 23-30. [77] X.Y. Wang, Y. Shuai, H.M. Zhang, J.Y. Sun, Y. Yang, Z.L. Huang, B.B. Jiang, Z.W. Liao, J.D. Wang, Y.R. Yang, Bubble breakup in a swirl-Venturi microbubble generator, Chem. Eng. J. 403 (2021) 126397. [78] X.Y. Wang, Y. Shuai, Y. Yang, Z.L. Huang, B.B. Jiang, J.D. Wang, Y.R. Yang, Bubble formation in a swirl-Venturi microbubble generator, Ind. Eng. Chem. Res. 61 (43) (2022) 16291-16302. [79] G.D. Ding, J.Q. Chen, C.S. Wang, C. Shang, M.L. Liu, X.L. Cai, Y.P. Ji, Structural design and numerical simulation of axial-swirling type micro-bubble generator, Chin. J. Process. Eng. 18 (5) (2018) 934-941. [80] L.C. Mutharasu, D.V. Kalaga, M. Sathe, D.E. Turney, D. Griffin, X.L. Li, M. Kawaji, K. Nandakumar, J.B. Joshi, Experimental study and CFD simulation of the multiphase flow conditions encountered in a novel down-flow bubble column, Chem. Eng. J. 350 (2018) 507-522. [81] D.E. Turney, D.V. Kalaga, M. Ansari, R. Yakobov, J.B. Joshi, Reform of the drift-flux model of multiphase flow in pipes, wellbores, and reactor vessels, Chem. Eng. Sci. 184 (2018) 251-258. [82] M. Ansari, D.E. Turney, R. Yakobov, S. Banerjee, J.B. Joshi, Hydrodynamics under the jet-array of a downflow microbubble column: Performance intensification, Chem. Eng. Process. Process. Intensif. 130 (2018) 326-331. [83] D.V. Kalaga, M. Ansari, D.E. Turney, F. Hernandez-Alvarado, S. Kleinbart, K.E. ArunKumar, J.B. Joshi, S. Banerjee, M. Kawaji, Scale-up of a downflow bubble column: Experimental investigations, Chem. Eng. J. 386 (2020) 121447. [84] M. Ansari, D.E. Turney, R. Yakobov, D.V. Kalaga, S. Kleinbart, S. Banerjee, J.B. Joshi, Chemical hydrodynamics of a downward microbubble flow for intensification of gas-fed bioreactors, AIChE J. 64 (4) (2018) 1399-1411. [85] D.E. Turney, M. Ansari, D.V. Kalaga, R. Yakobov, S. Banerjee, J.B. Joshi, A micro-jet array for economic intensification of gas transfer in bioreactors, Biotechnol. Prog. 35 (1) (2019) e2710. [86] Y. Shuai, X.Y. Guo, H.T. Wang, Z.L. Huang, Y. Yang, J.Y. Sun, J.D. Wang, Y.R. Yang, Characterization of the bubble swarm trajectory in a jet bubbling reactor, AIChE J. 65 (5) (2019) e16565. [87] Y. Shuai, X.Y. Wang, Z.L. Huang, J.Y. Sun, Y. Yang, Z.W. Liao, J.D. Wang, Y.R. Yang, Experimental measurement of bubble breakup in a jet bubbling reactor, AIChE J. 67 (1) (2021) e17062. [88] Y. Shuai, X.Y. Wang, Z.L. Huang, Y. Yang, J.Y. Sun, J.D. Wang, Y.R. Yang, Structural design and performance of a jet-impinging type microbubble generator, Ind. Eng. Chem. Res., 61 (12) (2022) 4445-4459. [89] Y. Shuai, X.Y. Wang, Z.L. Huang, Y. Yang, J.Y. Sun, J.D. Wang, Y.R. Yang, Bubble size distribution and rise velocity in a jet bubbling reactor, Ind. Eng. Chem. Res. 58 (41) (2019) 19271-19279. [90] Y.L. Zhu, Z.L. Huang, Y. Shuai, Y. Yang, J.Y. Sun, W. Li, J.D. Wang, Y.R. Yang, Experimental and numerical study on the formation and detachment of bubbles at orifices under the impinging jet flow, Chem. Eng. Sci. 298 (2024) 120341. [91] C. Toshiyuki Matsumi, W. Jose da Silva, F. Kurt Schneider, J. Miguel Maia, R. E M Morales, W. Duarte Araujo Filho, Micropipette-based microfluidic device for monodisperse microbubbles generation, Micromachines 9 (8) (2018) 387. [92] Q. Wang, L.X. Sun, Y.F. Zhang, Q.J. Zhang, H.Y. Ning, Z.J. Huang, Influence of wall wettability of coaxial microchannel on microbubble generation characteristics, Sci. Technol. Eng. 24 (2) (2024) 690-697. [93] Z. Chen, C.Y. Zhu, T.T. Fu, X.Q. Gao, Y.G. Ma, Formation dynamics and size prediction of bubbles for slurry system in T-shape microchannel, Chin. J. Chem. Eng. 45 (2022) 153-161. [94] M. Ichiyanagi, R. Miyazaki, T. Ogasawara, I. Kinefuchi, Y. Matsumoto, S. Takagi, Measurements of microbubble generation process in microchannel using ultra high-speed micro-PTV system, Microfluid. Nanofluid. 14 (6) (2013) 1011-1020. [95] Z. Yan, H.X. Huang, Z.H. Pan, Bubble breakup and boiling heat transfer in Y-shaped bifurcating microchannels, AIChE J. 69 (2) (2023) e17836. [96] S.F. Zhang, C.Y. Guo, Q.L. Qian, G.Q. Yuan, Synthesis of acetic acid and acetic anhydride from methanol carbonylation with polymer supported rhodium catalyst, Catal. Commun. 9 (5) (2008) 853-858. [97] N. Nemati, R. Eslamlueyan, Development of RSM statistical model for methanol carbonylation rate for acetic acid synthesis by using cativa TM technology, Chem. Prod. Process Model. 14 (2) (2019) 1-13. [98] Y. Shuai, P. Zhang, X.Y. Guo, X.Y. Wang, Z.L. Huang, Y. Yang, J.Y. Sun, M. Li, Y. Jiang, J. Ma, J.D. Wang, Y.R. Yang, Classification and identification of gas-liquid dispersion states in a jet bubbling reactor, AIChE J. 66 (1) (2020) e16778. [99] Z.L. Huang, Y. Shuai, C.J. Ren, Y. Yang, J.Y. Sun, J.D. Wang, Y.R. Yang, Effects of internal structures on mass transfer performance of jet bubbling reactor, Chem. Eng. Process. Process. Intensif. 175 (2022) 108936. [100] Y. Jiang, M. Li, Y. Shuai, J. Ma, H.L. Huang, J.D. Wang, Industrial application of jet-stirred gas-liquid reactor technology, Petrochem. Technol. 51 (9) (2022) 1086-1090. [101] A.T. Guduru, A. Singh, A. Mansuri, S. Khuntia, A. Kumar, S. Dalvi, Magnetic nanoparticle loaded ozone microbubbles for effective degradation of organic pollutants from sewage water, J. Water Process. Eng. 71 (2025) 107283. [102] Y.X. Jiang, K. Wang, Y.Z. Zhang, Y. Cheng, T.X. Zhu, J.Y. Huang, W.L. Cai, Y.K. Lai, Superoleophobic TiO2@SSM membranes with antifouling and photocatalytic ability for efficient microbubbles flotation emulsion separation and organic pollutants degradation, J. Membr. Sci. 690 (2024) 122217. [103] Q.Y. Han, T. Lin, J.Y. Du, W. Liu, Rapid degradation of trace atrazine using ozone microbubbles generated by ceramic membranes: Efficiency, mechanism, and toxicity, J. Environ. Chem. Eng. 13 (2) (2025) 115649. [104] H.L. Qian, H.Z. Tian, G.Q. Yang, G.D. Yang, L. Li, F. Zhang, Z. Zhou, W.H. Huang, Y.F. Chen, Z.B. Zhang, Microinterface intensification in hydrogenation and air oxidation processes, Chin. J. Chem. Eng. 50 (2022) 292-300. [105] J.X. Zhang, D.L. Mao, H. Zhang, D.F. Wu, Hydrophobic hollow-structured nanocatalyst for aqueous-phase selective hydrogenation of furfural: “H2 storage and supercharging” effect, Chem. Eng. J. 471 (2023) 144461. [106] X.Y. Wang, Y. Shuai, X.R. Zhou, Z.L. Huang, Y. Yang, J.Y. Sun, H.M. Zhang, J.D. Wang, Y.R. Yang, Performance comparison of swirl-Venturi bubble generator and conventional Venturi bubble generator, Chem. Eng. Process. Process. Intensif. 154 (2020) 108022. [107] Z. Xu, G. Mapstone, Z. Coady, M.N. Wang, T.L. Spreng, X.Y. Liu, D. Molino, A.C. Forse, Enhancing electrochemical carbon dioxide capture with supercapacitors, Nat. Commun. 15 (1) (2024) 7851. [108] E. Sanabria, M. Maldonado, C. Matiz, A.C.F. Ribeiro, M.A. Esteso, Methods of capture and transformation of carbon dioxide (CO2) with macrocycles, Processes 13 (1) (2025) 117. [109] S.T. Zheng, Y. Jiang, S.J. Jia, Y. Wu, P. Cui, Effect of the presence of trace sulfur dioxide on piperazine-based amine absorbents for carbon dioxide capture, Chin. J. Chem. Eng. 73 (9) (2024) 34-41. [110] H. Jeong, J. Lim, Y. Yun, Y. Ryu, J. Kim, Novel waste bone recovery system for CO2 and SOx utilization in cement plants using microbubble carbonation reactor, J. Environ. Chem. Eng. 12 (1) (2024) 111729. [111] Y.F. Zhao, K.I. Itakura, A state-of-the-art review on technology for carbon utilization and storage, Energies 16 (10) (2023) 3992. [112] H.Y. Liu, Z.B. Fu, Q.S. Huang, A.Q. Chen, Z.Z. Wang, H.D. Zhang, Experimental investigation on continuous reaction crystallizer for CO2 capture by phase-change method, Chem. Eng. J. 466 (2023) 143345. [113] Z.G. Xiao, X.Y. Gao, M.A. Mohammed, R.L. Zhang, H.R. Sun, D.X. Li, F.F. Pan, Simultaneous removal of NO and SO2 with a novel oxidation-absorption process based on air microbubble water system, J. Environ. Eng. 146 (9) (2020) 04020109. [114] W. Zeng, C. Jia, H.X. Luo, G.D. Yang, G.Q. Yang, Z.B. Zhang, Microbubble-dominated mass transfer intensification in the process of ammonia-based flue gas desulfurization, Ind. Eng. Chem. Res. 59 (44) (2020) 19781-19792. [115] Z. Taghavi Zinjenab, E. Azimi, M. Shadman, M.R. Hosseini, M. Abbaszadeh, S.M. Namgar, Nano-microbubbles and feed size interaction in lead and zinc sulfide minerals flotation, Chem. Eng. Process. Process. Intensif. 189 (2023) 109401. [116] N.M. Alia, K. Mohammada, J.C. Mohammada, M.M. Mohammad, Effect of stable nano-microbubbles on sulfide copper flotation and reduction of chemicals dosage, J. Min. Environ. 15 (1) (2024) 261-283. [117] M.U. Jung, Y.C. Kim, G. Bournival, S. Ata, Industrial application of microbubble generation methods for recovering fine particles through froth flotation: A review of the state-of-the-art and perspectives, Adv. Colloid Interface Sci. 322 (2023) 103047. [118] S. Rastogi, D.R. Lippits, G.W.M. Peters, R. Graf, Y.F. Yao, H.W. Spiess, Heterogeneity in polymer melts from melting of polymer crystals, Nat. Mater. 4 (8) (2005) 635-641. [119] S.Y. Ye, J.C. Dai, W. Li, Y. Yang, Z.L. Huang, J.D. Wang, Y.R. Yang, Tailoring the chain entanglement by nitrogen bubble-assisted polymerization, Ind. Eng. Chem. Res. 60 (44) (2021) 15951-15959. [120] J.C. Dai, C.J. Yu, S.Y. Ye, W. Li, X. Kang, Y. Yang, P. Liang, Y.L. Ma, Z.L. Huang, B.B. Jiang, J.D. Wang, Y.R. Yang, The intermittent dormancy of ethylene polymerization with the assistance of nitrogen microbubbles, Macromolecules 54 (20) (2021) 9418-9426. |
| [1] | Yanfu Chen, Chu Zhou, Dang Cheng, Fener Chen. Liquid–solid mass transfer in micropacked bed reactors with immiscible liquid–liquid two-phase flow[J]. 中国化学工程学报, 2025, 85(9): 1-6. |
| [2] | Kangjun Ji, Jingxuan Yang, Xuefeng Zhang, Mengbo Zhao, Xiao Du, Xiaogang Hao, Abuliti Abudula, Guoqing Guan. Enhanced fluid-flow-field and electric-field synergistic interaction mechanism for lithium-ion separation in dilute solutions: A numerical analysis of electrochemically switched ion exchange system[J]. 中国化学工程学报, 2025, 85(9): 228-237. |
| [3] | Feifei Chen, Zhenyuan Xiao, Zhongfan Luo, Peng Jiang, Jingjing Chen, Yuanhui Ji, Jiahua Zhu, Xiaohua Lu, Liwen Mu. Prediction of mass transfer performance in gas-liquid stirred bioreactor using machine learning[J]. 中国化学工程学报, 2025, 84(8): 211-226. |
| [4] | Xuedan Hou, Pengfei Zhao, Xiaohui Lin, Yunxing Gao, Huidong Chen, Di Cai, Peiyong Qin. Current advances in distillation processes for fermentative acetone-butanol-ethanol purification[J]. 中国化学工程学报, 2025, 79(3): 91-108. |
| [5] | Shijie Liu, Jin Liang, Qin Li, Hui Yu, Haoliang Wang, Xiangyang Li, Chao Yang. Effects of internals on macroscopic fluid dynamics in a bubble column[J]. 中国化学工程学报, 2025, 77(1): 19-29. |
| [6] | Min An, Chengxiang Wang, Qing Liu, Mengya Wang, Zhirong Yang, Wenpeng Li, Guoli Zhou, Jingtao Wang, Jinli Zhang. Mixing behavior and mass transfer of liquid—liquid two-phase flow in an annular microchannel with helical wires[J]. 中国化学工程学报, 2025, 77(1): 42-56. |
| [7] | Jinrong Zhong, Yu Tian, Yifei Sun, Li Wan, Yan Xie, Yujie Zhu, Changyu Sun, Guangjin Chen, Yuefei Zhang. The dual action of N2 on morphology regulation and mass-transfer acceleration of CO2 hydrate film[J]. 中国化学工程学报, 2024, 73(9): 120-129. |
| [8] | Maoqiao Xiang, Wenjun Ding, Qinghua Dong, Qingshan Zhu. Synthesis methods and powder quality of titanium monocarbide[J]. 中国化学工程学报, 2024, 72(8): 10-18. |
| [9] | Kangrui Nie, Ruize Shang, Fuming Miao, Liuxiang Wang, Youzhi Liu, Weizhou Jiao. An integrated technology for the absorption and utilization of CO2 in alkanolamine solution for the preparation of BaCO3 in a high-gravity environment[J]. 中国化学工程学报, 2024, 72(8): 117-125. |
| [10] | Xufang Chen, Xin Shu, Yanru Zhu, Jian Zhang, Zhigang Chai, Hongyan Song, Zhe An, Jing He. Highly dispersed MgInCe-mixed metal oxides catalyzed direct carbonylation of glycerol and CO2 into glycerol carbonate[J]. 中国化学工程学报, 2024, 72(8): 153-163. |
| [11] | Han-Qiao Hu, Yue Zhang, Ming Fan, Yong Cai, Guang-Wen Chu, Liang-Liang Zhang. Complete kinetic model for esterification reaction of lauric acid with glycerol to synthesize glycerol monolaurate[J]. 中国化学工程学报, 2024, 70(6): 211-221. |
| [12] | Guodong Xia, Xiaoya Zhang, Dandan Ma. Effects of baffle position in serpentine flow channel on the performance of proton exchange membrane fuel cells[J]. 中国化学工程学报, 2024, 69(5): 250-262. |
| [13] | Shaoyun Wu, Zhuang Ma, Zichi Yang, Suying Zhao, Caijin Zhou, Huidong Zheng. Enhancement of liquid-liquid micromixing performance in curved capillary microreactor by generation of Dean vortices[J]. 中国化学工程学报, 2024, 68(4): 76-82. |
| [14] | Mei Bai, Zhibin Liu, Zhu Liu, Chenfei He, Zhanhuang Fan, Miaoxin Yuan. Effect of surfactant frequently used in soil flushing on oxygen mass transfer in micro-nano-bubble aeration system[J]. 中国化学工程学报, 2024, 67(3): 174-181. |
| [15] | Chuanjun Di, Jipeng Dong, Fei Gao, Guanghui Chen, Pan Zhang, Jianlong Li. Mass transfer enhancement and hydrodynamic performance with wire mesh coupling solid particles in bubble column reactor[J]. 中国化学工程学报, 2024, 67(3): 195-205. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001993号 
