[1] Z.M. Kang, L.F. Feng, J.J. Wang, Optimization of a gas-liquid dual-impeller stirred tank based on deep learning with a small data set from CFD simulation, Ind. Eng. Chem. Res. 63 (1) (2024) 843-855. [2] A.Q. Li, Y. Yao, X.Y. Tang, P.Q. Liu, Q. Zhang, Q. Li, P. Li, F. Zhang, Y.D. Wang, C.Y. Tao, Z.H. Liu, Experimental and computational investigation of chaotic advection mixing in laminar rectangular stirred tanks, Chem. Eng. J. 485 (2024) 149956. [3] M. Jamshidzadeh, A. Kazemzadeh, F. Ein-Mozaffari, A. Lohi, Analysis of power consumption for gas dispersion in non-Newtonian fluids with a coaxial mixer: New correlations for Reynolds and power numbers, Chem. Eng. J. 401 (2020) 126002. [4] A. Kazemzadeh, C. Elias, M. Tamer, A. Lohi, F. Ein-Mozaffari, Mass transfer in a single-use angled-shaft aerated stirred bioreactor applicable for animal cell culture, Chem. Eng. Sci. 219 (2020) 115606. [5] Y. Kawase, B. Halard, M. Moo-Young, Liquid-phase mass transfer coefficients in bioreactors, Biotechnol. Bioeng. 39 (11) (1992) 1133-1140. [6] F. Garcia-Ochoa, E. Gomez, Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview, Biotechnol. Adv. 27 (2) (2009) 153-176. [7] H. Chen, Z. Chen, X.Q. Wang, X.G. Yi, X.B. Zhang, Z.H. Luo, Mass transfer and bubble hydrodynamics in stirred tank with multiple properties fluid via a CFD-PBM method, Can. J. Chem. Eng. 102 (11) (2024) 4038-4054. [8] N. Kumar, A. Bansal, R. Gupta, Shear rate and mass transfer coefficient in internal loop airlift reactors involving non-Newtonian fluids, Chem. Eng. Res. Des. 136 (2018) 315-323. [9] X.M. Liu, J. Wan, J.N. Sun, L. Zhang, F. Zhang, Z.B. Zhang, X.Y. Li, Z. Zhou, Effect of bubble morphology and behavior on power consumption in non-Newtonian fluids’ aeration process, Chin. J. Chem. Eng. 65 (2024) 243-254. [10] Y.H. Du, L.L. Tong, Y. Wang, M.Z. Liu, L. Yuan, X.Y. Mu, S.J. He, S.X. Wei, Y.D. Zhang, Z.L. Chen, Z.D. Zhang, D.S. Guo, Development of a kinetics-integrated CFD model for the industrial scale-up of DHA fermentation using Schizochytrium sp, AlChE. J. 68 (9) (2022) e17750. [11] J.Y. Xia, G. Wang, M. Fan, M. Chen, Z.Y. Wang, Y.P. Zhuang, Understanding the scale-up of fermentation processes from the viewpoint of the flow field in bioreactors and the physiological response of strains, Chin. J. Chem. Eng. 30 (2021) 178-184. [12] P. Moilanen, M. Laakkonen, O. Visuri, V. Alopaeus, J. Aittamaa, Modelling mass transfer in an aerated 0.2m3 vessel agitated by Rushton, Phasejet and Combijet impellers, Chem. Eng. J. 142 (1) (2008) 95-108. [13] M.H. Xie, J.Y. Xia, Z. Zhou, G.Z. Zhou, J. Chu, Y.P. Zhuang, S.L. Zhang, H. Noorman, Power consumption, local and average volumetric mass transfer coefficient in multiple-impeller stirred bioreactors for xanthan gum solutions, Chem. Eng. Sci. 106 (2014) 144-156. [14] S. Bun, K. Wongwailikhit, N. Chawaloesphonsiya, J. Lohwacharin, P. Ham, P. Painmanakul, Development of modified airlift reactor (MALR) for improving oxygen transfer: optimize design and operation condition using ‘design of experiment’ methodology, Environ. Technol. 41 (20) (2020) 2670-2682. [15] A. Pan, M.H. Xie, J.Y. Xia, J. Chu, Y.P. Zhuang, Gas-liquid mass transfer studies: The influence of single- and double-impeller configurations in stirred tanks, Korean J. Chem. Eng. 35 (1) (2018) 61-72. [16] T.J. Bondancia, L.J. Correa, A.J.G. Cruz, A.C. Badino, L.H.C. Mattoso, J.M. Marconcini, C.S. Farinas, Enzymatic production of cellulose nanofibers and sugars in a stirred-tank reactor: determination of impeller speed, power consumption, and rheological behavior, Cellulose 25 (8) (2018) 4499-4511. [17] Y.F. Zhou, P.X. Kang, Z.L. Huang, P. Yan, J.Y. Sun, J.D. Wang, Y.R. Yang, Experimental measurement and theoretical analysis on bubble dynamic behaviors in a gas-liquid bubble column, Chem. Eng. Sci. 211 (2020) 115295. [18] H. Ali, J. Solsvik, Axial distributions of bubble-liquid mass transfer coefficient in laboratory-scale stirred tank with viscous Newtonian and non-Newtonian fluids, 32 (12) (2020) 123308. [19] L. Nino, R. Gelves, J. Solsvik, Viscous effects on gas-liquid hydrodynamics for bubble size determinations in different Newtonian and non-Newtonian fluids using a CFD-PBM model, Chem. Eng. Sci. 282 (2023) 119324. [20] S. Mishra, V. Kumar, J. Sarkar, A.S. Rathore, Mixing and mass transfer in production scale mammalian cell culture reactor using coupled CFD-species transport-PBM validation, Chem. Eng. Sci. 267 (2023) 118323. [21] A. Rahimzadeh, F. Ein-Mozaffari, A. Lohi, New insights into the gas dispersion and mass transfer in shear-thinning fluids inside an aerated coaxial mixer via analysis of flow hydrodynamics and shear environment, Ind. Eng. Chem. Res. 61 (10) (2022) 3713-3728. [22] X. Xu, L. Wang, H.L. Wang, H.L. Liu, Q. Yang, Circulating jet for enhancing the mass transfer in a gas-liquid stirred tank reactor, AlChE. J. 68 (1) (2022) e17392. [23] B.Q. Liu, Q. Xiao, N. Sun, P.F. Gao, F.Y. Fan, B. Sunden, Effect of gas distributor on gas-liquid dispersion and mass transfer characteristics in stirred tank, Chem. Eng. Res. Des. 145 (2019) 314-322. [24] S.S. de Jesus, J.M. Neto, A. Santana, R.M. Filho, Influence of impeller type on hydrodynamics and gas-liquid mass-transfer in stirred airlift bioreactor, AlChE. J. 61 (10) (2015) 3159-3171. [25] A. Rahimzadeh, F. Ein-Mozaffari, A. Lohi, A methodical approach to scaling up an aerated coaxial mixer containing a shear-thinning fluid: effect of the fluid rheology, Ind. Eng. Chem. Res. 62 (21) (2023) 8454-8476. [26] J.C. Gabelle, F. Augier, A. Carvalho, R. Rousset, J. Morchain, Effect of tank size on kLa and mixing time in aerated stirred reactors with non-Newtonian fluids, Can. J. Chem. Eng. 89 (5) (2011) 1139-1153. [27] X. Xiao, J.Y. Yin, J. Xu, T. Tat, J. Chen, Advances in machine learning for wearable sensors, ACS Nano 18 (34) (2024) 22734-22751. [28] X.Z. Zhao, H.A. Fan, G.B. Lin, Z.C. Fang, W.L. Yang, M. Li, J.H. Wang, X.Y. Lu, B.L. Li, K.J. Wu, J. Fu, Multi-objective optimization of radially stirred tank based on CFD and machine learning, AlChE. J. 70 (3) (2024) e18324. [29] P.L. Barros, F. Ein-Mozaffari, A. Lohi, S. Upreti, Exploiting the prediction of mass transfer performance in aerated coaxial mixers containing biopolymer solutions using empirical correlations and neural networks, Can. J. Chem. Eng. 103 (3) (2025) 1258-1275. [30] I. Andrade Cruz, W. Chuenchart, F. Long, K.C. Surendra, L. Renata Santos Andrade, M. Bilal, H. Liu, R. Tavares Figueiredo, S.K. Khanal, L. Fernando Romanholo Ferreira, Application of machine learning in anaerobic digestion: Perspectives and challenges, Bioresour. Technol. 345 (2022) 126433. [31] A. Shehadeh, O. Alshboul, R.E. Al Mamlook, O. Hamedat, Machine learning models for predicting the residual value of heavy construction equipment: an evaluation of modified decision tree, LightGBM, and XGBoost regression, Autom. Constr. 129 (2021) 103827. [32] L.T. Zhu, X.Z. Chen, B. Ouyang, W.C. Yan, H. Lei, Z. Chen, Z.H. Luo, Review of machine learning for hydrodynamics, transport, and reactions in multiphase flows and reactors, Ind. Eng. Chem. Res. 61 (28) (2022) 9901-9949. [33] S.L. Brunton, B.R. Noack, P. Koumoutsakos, Machine learning for fluid mechanics, Annu. Rev. Fluid Mech. 52 (2020) 477-508. [34] R. Chen, L.L. Luo, X.D. Wang, B.B. Ren, D.K. Guo, S. Zhu, Knowing the unknowns: Network traffic detection with open-set semi-supervised learning, Comput. Netw. 251 (2024) 110630. [35] T.Z. Si, F.Z. He, Z. Zhang, Y.S. Duan, Hybrid contrastive learning for unsupervised person re-identification, IEEE Trans. Multimed. 25 (2022) 4323-4334. [36] X.S. Feng, H. Zahed, J. Onwuka, M.E.J. Callister, M. Johansson, R. Etzioni, H.A. Robbins, Cancer stage compared with mortality as end points in randomized clinical trials of cancer screening, Jama 331 (22) (2024) 1910. [37] S. Ali Shah, S.T. Ai, H.X. Yuan, Predicting water level fluctuations in glacier-fed lakes by ensembling individual models into a quad-meta model, eng appl comput fluid Mech 19 (1) (2025), https://doi.org/10.1080/19942060.2024.2449124. [38] Proceedings of 3rd international conference on document analysis and recognition, Proceedings of 3rd International Conference on Document Analysis and Recognition. August 14-16, 1995, Montreal, QC, Canada. IEEE, (2002) iii. [39] L. Breiman, Random forests, Machine Learning 45 (2001) 5-32. [40] Q.L. Lu, H. Zhang, R. Fan, Y.H. Wan, J.Q. Luo, Machine learning-based Bayesian optimization facilitates ultrafiltration process design for efficient protein purification, Sep. Purif. Technol. 363 (2025) 132122. [41] M.F. Mahmoud, M. Arabi, S. Pallickara, Harnessing ensemble Machine learning models for improved salinity prediction in large river basin scales, J. Hydrol. 652 (2025) 132691. [42] H. Lamane, L. Mouhir, R. Moussadek, B. Baghdad, O. Kisi, A. El Bilali, Interpreting machine learning models based on SHAP values in predicting suspended sediment concentration, Int. J. Sediment Res. 40 (1) (2025) 91-107. [43] L. Shen, Y.P. Jin, A.X. Pan, K. Wang, R.Z. Ye, Y.K. Lin, S. Anwar, W.C. Xia, M. Zhou, X.G. Guo, Machine learning-based predictive models for perioperative major adverse cardiovascular events in patients with stable coronary artery disease undergoing noncardiac surgery, Comput. Methods Programs Biomed. 260 (2025) 108561. [44] B. Yuan, Z.L. Yang, P. Wu, X.B. Yin, C.J. Liu, F.J. Sun, J. He, W. Jiang, Efficient treatment of chromium-containing wastewater based on auxiliary intelligent model with rapid-response adsorbents, Sep. Purif. Technol. 363 (2025) 132037. [45] M. Maraschin, T.D. Metzka Lanzanova, N.P. Goncalves Salau, Predictions of heat of combustion and formation by interpretable machine learning algorithms, Fuel 390 (2025) 134699. [46] M.F. Tahir, M.Z. Yousaf, A. Tzes, M.S. El Moursi, T.H.M. El-Fouly, Enhanced solar photovoltaic power prediction using diverse machine learning algorithms with hyperparameter optimization, Renew. Sustain. Energy Rev. 200 (2024) 114581. [47] A. Altmann, L. Tolosi, O. Sander, T. Lengauer, Permutation importance: a corrected feature importance measure, Bioinformatics 26 (10) (2010) 1340-1347. [48] P. Jiang, J. Fan, L. Li, C.H. Wang, S.J. Tao, T. Ji, L.W. Mu, X.H. Lu, J.H. Zhu, A hybrid approach combining mechanism-guided data augmentation and machine learning for biomass pyrolysis, Chem. Eng. Sci. 296 (2024) 120227. [49] P. Jiang, C.H. Wang, J. Fan, T. Ji, L.W. Mu, X.H. Lu, J.H. Zhu, Hybrid residual modelling of biomass pyrolysis, Chem. Eng. Sci. 293 (2024) 120096. [50] H. Mesghali, B. Akhlaghi, N. Gozalpour, J. Mohammadpour, F. Salehi, R. Abbassi, Predicting maximum pitting corrosion depth in buried transmission pipelines: Insights from tree-based machine learning and identification of influential factors, Process. Saf. Environ. Prot. 187 (2024) 1269-1285. [51] Z.G. Li, H.Z. Shi, X. Yang, H. Tang, Investigating the nonlinear relationship between surface solar radiation and its influencing factors in North China Plain using interpretable machine learning, Atmos. Res. 280 (2022) 106406. [52] J. Li, L.J. Pan, M. Suvarna, Y.W. Tong, X.N. Wang, Fuel properties of hydrochar and pyrochar: prediction and exploration with machine learning, Appl. Energy 269 (2020) 115166. [53] B.Y. Liang, H.Y. Liu, E.L. Cressey, C.Y. Xu, L. Shi, L. Wang, J.Y. Dai, Z. Wang, J. Wang, Uncertainty of partial dependence relationship between climate and vegetation growth calculated by machine learning models, Remote. Sens. 15 (11) (2023) 2920. [54] Q.Y. Zhao, T. Hastie, Causal interpretations of black-box models, J. Bus. Econ. Stat. 2019 (2019) 10.1080/07350015.2019.1624293. [55] B. Triveni, B. Vishwanadham, T. Madhavi, S. Venkateshwar, Mixing studies of non-Newtonian fluids in an anchor agitated vessel, Chem. Eng. Res. Des. 88 (7) (2010) 809-818. [56] J.M.T. Vasconcelos, S.C.P. Orvalho, A.M.A.F. Rodrigues, S.S. Alves, Effect of blade shape on the performance of six-bladed disk turbine impellers, Ind. Eng. Chem. Res. 39 (1) (2000) 203-213. [57] R. Petricek, T. Moucha, F.J. Rejl, L. Valenz, J. Haidl, C. Tereza, Volumetric mass transfer coefficient, power input and gas hold-up in viscous liquid in mechanically agitated fermenters. Measurements and scale-up, Int. J. Heat Mass Transf. 124 (2018) 1117-1135. [58] F. Haseidl, J. Pottbacker, O. Hinrichsen, Gas-Liquid mass transfer in a rotor-stator spinning disc reactor: Experimental study and correlation, Chem. Eng. Process. Process. Intensif. 104 (2016) 181-189. [59] H. Ali, S. Zhu, J. Solsvik, Effects of geometric parameters on volumetric mass transfer coefficient of non-Newtonian fluids in stirred tanks, Int. J. Chem. React. Eng. 20 (7) (2022) 697-711. [60] S.H. Zhou, Y. Li, X.Y. Zhang, Optimization modeling of anti - breast cancer candidate drugs, Biotechnol. Genet. Eng. Rev. 40 (2) (2024) 1334-1352. [61] X.Y. Zhang, P.C. Xiao, Y.Z. Yang, Y.J. Cheng, B. Chen, D.Z. Gao, W.R. Liu, Z.W. Huang, Remaining useful life estimation using CNN-XGB with extended time window, IEEE Access 7 (2019) 154386-154397. [62] D. Gomez-Diaz, J.M. Navaza, Analysis of carbon dioxide gas/liquid mass transfer in aerated stirred vessels using non-Newtonian media, J. Chem. Technol. Biotechnol. 79 (10) (2004) 1105-1112. [63] V. Cappello, C. Plais, C. Vial, F. Augier, Bubble size and liquid-side mass transfer coefficient measurements in aerated stirred tank reactors with non-Newtonian liquids, Chem. Eng. Sci. 211 (2020) 115280. [64] S.R. Lone, V. Kumar, J.R. Seay, D.L. Englert, H.T. Hwang, Mass transfer and rheological characteristics in a stirred tank bioreactor for cultivation of escherichia coli BL21, Biotechnol. Bioprocess Eng. 25 (5) (2020) 766-776. [65] A.K. Pandey, J. Park, J. Ko, H.H. Joo, T. Raj, L.K. Singh, N. Singh, S.H. Kim, Machine learning in fermentative biohydrogen production: Advantages, challenges, and applications, Bioresour. Technol. 370 (2023) 128502. [66] E. Dumont, Mass transfer in Multiphasic gas/liquid/liquid systems. KLa determination using the effectiveness-number of transfer unit method, Processes. 6(9) (2018) 156. [67] D.L. Li, W. Chen, Effects of impeller types on gas-liquid mixing and oxygen mass transfer in aerated stirred reactors, Process. Saf. Environ. Prot. 158 (2022) 360-373. [68] A. Ordaz, I. Figueroa-Gonzalez, P. San-Valero, C. Gabaldon, G. Quijano, Effect of the height-to-diameter ratio on the mass transfer and mixing performance of a biotrickling filter, J. Chem. Technol. Biotechnol. 93 (1) (2018) 121-126. [69] M.R. Valverde, R. Bettega, A.C. Badino, Numerical evaluation of mass transfer coefficient in stirred tank reactors with non-Newtonian fluid, Theor. Found. Chem. Eng. 50 (6) (2016) 945-958. [70] A. Rahimzadeh, F. Ein-Mozaffari, A. Lohi, Development of a scale-up strategy for an aerated coaxial mixer containing a non-Newtonian fluid: a mass transfer approach, Phys Fluids. 35(7) (2023) 073103. [71] L. Shu, M.J. Yang, H. Zhao, T.F. Li, L. Yang, X. Zou, Y.W. Li, Process optimization in a stirred tank bioreactor based on CFD-Taguchi method: a case study, J. Clean. Prod. 230 (2019) 1074-1084. [72] G.M. Mule, R. Lohia, A.A. Kulkarni, Effect of number of branches on the performance of fractal impeller in a stirred tank: Mixing and hydrodynamics, Chem. Eng. Res. Des. 108 (2016) 164-175. [73] H.N. Wang, X.X. Duan, X. Feng, Z.S. Mao, C. Yang, Effect of impeller type and scale-up on spatial distribution of shear rate in a stirred tank, Chin. J. Chem. Eng. 42 (2022) 351-363. [74] S. Salehi, A. Heydarinasab, F.P. Shariati, A.T. Nakhjiri, K. Abdollahi, Parametric numerical study and optimization of mass transfer and bubble size distribution in a gas-liquid stirred tank bioreactor equipped with Rushton turbine using computational fluid dynamics, Int. J. Chem. React. Eng. 19 (10) (2021) 1115-1131. [75] P. Lins Barros, F. Ein-Mozaffari, A. Lohi, Gas dispersion in non-newtonian fluids with mechanically agitated systems: A Review, Processes 10(2) (2022) 275. [76] T. Kumaresan, J.B. Joshi, Effect of impeller design on the flow pattern and mixing in stirred tanks, Chem. Eng. J. 115 (3) (2006) 173-193. [77] A. Gabriele, A.W. Nienow, M.J.H. Simmons, Use of angle resolved PIV to estimate local specific energy dissipation rates for up- and down-pumping pitched blade agitators in a stirred tank, Chem. Eng. Sci. 64 (1) (2009) 126-143. [78] M. Moayeri Kashani, S.H. Lai, S. Ibrahim, P. Moradi Bargani, Design factors affecting the dynamic performance of soil suspension in an agitated, baffled tank, Chin. J. Chem. Eng. 24 (12) (2016) 1664-1673. |