[1] M.Y. Zhu, Y. Yang, Poly(ionic liquid)s: an emerging platform for green chemistry, Green Chem. 26 (9) (2024) 5022-5102. [2] L. Zhang, J. Liu, S. Lou, H. Jiang, S. Wang, S. Li, T. Tang, A. Zhang, Synergistic Flame-retardant Epoxy Resin Using Quaternary Phosphate Naphthalene Sulfonate Ionic Liquid and Dimethyl Methylphosphonate, Chem. J. Chin. U., 45 (04) (2024) 17-26. (in Chinese). [3] F. Li, T. Zhang, L. Lv, W.X. Tang, Y. Wang, S.W. Tang, Effects of ionic liquids on the vapor-liquid equilibriumof 1, 3, 5-trioxane-water system at 101.3 kPa, Chin. J. Chem. Eng. 73 (2024) 42-50. [4] P.M. Probert, A.C. Leitch, M.P. Dunn, S.K. Meyer, J.M. Palmer, T.M. Abdelghany, A.F. Lakey, M.P. Cooke, H. Talbot, C. Wills, W. McFarlane, L.I. Blake, A.K. Rosenmai, A. Oskarsson, R. Figueiredo, C. Wilson, G.E. Kass, D.E. Jones, P.G. Blain, M.C. Wright, Identification of a xenobiotic as a potential environmental trigger in primary biliary cholangitis, J. Hepatol. 69 (5) (2018) 1123-1135. [5] A. Jakubowska, E. Grabinska-Sota, Study of the toxicity of five quaternary ammonium ionic liquids to aquatic organisms, Desalin. Water Treat. 117 (2018) 202-210. [6] G. Jeremias, F. Jesus, S.P.M. Ventura, F.J.M. Goncalves, J. Asselman, J.L. Pereira, New insights on the effects of ionic liquid structural changes at the gene expression level: Molecular mechanisms of toxicity in Daphnia Magna, J. Hazard. Mater. 409 (2021) 124517. [7] C. Zhang, L.S. Zhu, J.H. Wang, J. Wang, T.T. Zhou, Y.Q. Xu, C. Cheng, The acute toxic effects of imidazolium-based ionic liquids with different alkyl-chain lengths and anions on zebrafish (Danio rerio), Ecotoxicol. Environ. Saf. 140 (2017) 235-240. [8] D.M. Makarov, Y.A. Fadeeva, E.A. Safonova, L.E. Shmukler, Predictive modeling of antibacterial activity of ionic liquids by machine learning methods, Comput. Biol. Chem. 101 (2022) 107775. [9] M. Villanueva, P. Vallet, T. Teijeira, A. Santiago-Alonso, A. Amigo, E. Tojo, L.M. Varela, J.J. Parajo, J. Salgado, Effect of alkyl chain length on the thermal properties and toxicity of n-alkyl-ammonium nitrate ionic liquids (n = 2, 3, 4, 5, 6, 8) for energy applications, J. Therm. Anal. Calorim. (2024), https://doi.org/10.1007/s10973-024-13333-y. [10] H.J. Feng, L.L. Qin, B.X. Zhang, J. Zhou, Prediction and interpretability of melting points of ionic liquids using graph neural networks, ACS Omega 9 (14) (2024) 16016-16025. [11] V. Venkatraman, S. Evjen, H.K. Knuutila, A. Fiksdahl, B.K. Alsberg, Predicting ionic liquid melting points using machine learning, J. Mol. Liq. 264 (2018) 318-326. [12] H.J. Feng, W. Qin, G.W. Hu, H.J. Wang, Intelligent prediction of nitrous oxide capture in designable ionic liquids, Appl. Sci. 13 (12) (2023) 6900. [13] H.J. Feng, P.G. Zhang, W. Qin, W.M. Wang, H.J. Wang, Estimation of solubility of acid gases in ionic liquids using different machine learning methods, J. Mol. Liq. 349 (2022) 118413. [14] Y. Jian, Y.Y. Wang, A. Barati Farimani, Predicting CO2 absorption in ionic liquids with molecular descriptors and explainable graph neural networks, ACS Sustainable Chem. Eng. 10 (50) (2022) 16681-16691. [15] D.M. Makarov, Y.A. Fadeeva, V.A. Golubev, A.M. Kolker, Designing deep eutectic solvents for efficient CO2 capture: a data-driven screening approach, Sep. Purif. Technol. 325 (2023) 124614. [16] F.Z. Meng, S.Y. Han, L. Lin, J.L. Li, K.L. Chen, J.G. Jiang, Process optimization and mechanism study of ionic liquid-based mixed amine biphasic solvents for CO2 capture in biogas upgrading procedure, Front. Environ. Sci. Eng. 18 (8) (2024) 95. [17] S.J. Zeng, X.Q. Sun, Y.G. Bai, L. Bai, S. Zheng, X.P. Zhang, S.J. Zhang, Research progress of CO2 capture and separation by functionalized ionic liquids and materials, Acta Chim. Sin. 81 (6) (2023) 627. [18] Y.X. Fu, X.Y. Liu, J.Z. Gao, Y. Lei, Y.Q. Chen, X.P. Zhang, Machine learning models for the density and heat capacity of ionic liquid-water binary mixtures, Chin. J. Chem. Eng. 73 (2024) 244-255. [19] Y. Lei, Y. Shu, X.G. Liu, X.Y. Liu, X.Q. Wu, Y.Q. Chen, Predictive modeling on the surface tension and viscosity of ionic liquid-organic solvent mixtures via machine learning, J. Taiwan Inst. Chem. Eng. 151 (2023) 105140. [20] Y.Q. Chen, S.L. Ma, Y. Lei, X.D. Liang, X.Y. Liu, G.M. Kontogeorgis, R. Gani, Ionic liquid binary mixtures: Machine learning-assisted modeling, solvent tailoring, process design, and optimization, AlChE. J. 70 (5) (2024) e18392. [21] N.H. Abdullah, D. Zaini, B. Lal, Prediction of ionic liquids toxicity using machine learning models for application to gas hydrate, Process. Saf. Prog. 43 (2024) S199-S212. [22] D.C. Fan, K. Xue, R.Q. Zhang, W.G. Zhu, H.R. Zhang, J.G. Qi, Z.Y. Zhu, Y.L. Wang, P.Z. Cui, Application of interpretable machine learning models to improve the prediction performance of ionic liquids toxicity, Sci. Total Environ. 908 (2024) 168168. [23] Y.S. Zhao, J.H. Zhao, Y. Huang, Q. Zhou, X.P. Zhang, S.J. Zhang, Toxicity of ionic liquids: database and prediction via quantitative structure-activity relationship method, J. Hazard. Mater. 278 (2014) 320-329. [24] A. Sosnowska, M. Grzonkowska, T. Puzyn, Global versus local QSAR models for predicting ionic liquids toxicity against IPC-81 leukemia rat cell line: The predictive ability, J. Mol. Liq. 231 (2017) 333-340. [25] L.D. Cao, P. Zhu, Y.S. Zhao, J.H. Zhao, Using machine learning and quantum chemistry descriptors to predict the toxicity of ionic liquids, J. Hazard. Mater. 352 (2018) 17-26. [26] S.Y. Ma, M. Lv, X.Y. Zhang, H.L. Zhai, W.J. Lv, Computational study of the effects of cations and anions to the cytotoxicity of diverse ionic liquids by supervised machine learning, Chemom. Intell. Lab. Syst. 144 (2015) 138-147. [27] J.C. Yan, G.H. Liu, H.L. Chen, S. Hu, X.H. Wang, B. Yan, X.L. Yan, ILTox: a curated toxicity database for machine learning and design of environmentally friendly ionic liquids, Environ. Sci. Technol. Lett. 10 (11) (2023) 983-988. [28] J.C. Yan, X.L. Yan, S. Hu, H. Zhu, B. Yan, Comprehensive interrogation on acetylcholinesterase inhibition by ionic liquids using machine learning and molecular modeling, Environ. Sci. Technol. 55 (21) (2021) 14720-14731. [29] I.U. Ekanayake, D.P.P. Meddage, U. Rathnayake, A novel approach to explain the black-box nature of machine learning in compressive strength predictions of concrete using Shapley additive explanations (SHAP), Case Stud. Constr. Mater. 16 (2022) e01059. [30] L. Breiman, Bagging predictors, Mach. Learn. 24 (2) (1996) 123-140. [31] Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci. 55 (1) (1997) 119-139. [32] J.H. Friedman, Greedy function approximation: a gradient boosting machine, Ann. Statist. 29 (5) (2001) 1189-1232. [33] D.H. Wolpert, Stacked generalization, Neural Netw. 5 (2) (1992) 241-259. [34] A.V. Dorogush, V. Ershov, A. Gulin, CatBoost: gradient boosting with categorical features support, (2018): 1810.11363. [35] J.T. Hancock, T.M. Khoshgoftaar, CatBoost for big data: an interdisciplinary review, J. Big Data 7 (1) (2020) 94. [36] P. Geurts, D. Ernst, L. Wehenkel, Extremely randomized trees, Mach. Learn. 63 (1) (2006) 3-42. [37] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5-32. [38] P. Labute, A widely applicable set of descriptors, J. Mol. Graph. Model. 18 (4-5) (2000) 464-477. [39] B. Ramsundar, P. Eastman, P. Walters, V. Pande, Deep Learning for the Life Sciences: Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More, O'Reilly Media Inc., 2019. [40] Molecular descriptors, https://datagrok.ai/help/datagrok/solutions/domains/chem/descriptors. [41] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V. "Scikit-learn: Machine learning in Python", the Journal of machine Learning research, 12, 2825-2830(2011). [42] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. Vanderplas, A. Joly, B. Holt, G. Varoquaux, API design for machine learning software: experiences from the scikit-learn project, (2013): 1309.0238. [43] Fan, R., Chang, K., Hsieh, C., Wang, X., Lin, C. "LIBLINEAR: A library for large linear classification", Mach. Learn. Res. 9 (2008), 1871-1874. [44] H. Feng, B. Zhang, J. Zhou, Predicting and interpreting the toxicity of ionic liquids using graph neural network", CIESC Journal 76 (2025) 93-106. (in Chinese). [45] G. E. Hinton, Connectionist learning procedures, Artif. Intell. 40 (1-3) (1989) 185-234. [46] T.Q. Chen, C. Guestrin, XGBoost: A Scalable Tree Boosting System, In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco California USA, ACM, 2016. [47] A. Krogh, What are artificial neural networks? Nat. Biotechnol. 26 (2008) 195-197. |