[1] Q.Q. Xue, B.H. Yan, Y.J. Wang, G.S. Luo, Continuous synthesis of atomically dispersed Rh supported on MgAl2O4 using two-stage microreactor, AlChE. J. 68 (11) (2022) e17841. [2] Q. Chen, S.T. Xia, Y.J. Wang, G.S. Luo, H.Y. Shang, K. Wang, Continuous synthesis of 1-ethoxy-2, 3-difluoro-4-iodo-benzene in a microreactor system and the Gaussian and computational fluid dynamics simulations, AlChE. J. 67 (6) (2021) e17217. [3] S.T. Xia, X.F. Ding, Y.J. Wang, G.S. Luo, Z.T. Wu, Y.F. Cheng, B.Y. Hao, Large-scale synthesis of dihydrostreptomycin via hydrogenation of streptomycin in a membrane dispersion microreactor, Chem. Eng. J. 334 (2018) 2250-2254. [4] S.T. Xia, X.F. Ding, Y.J. Wang, G.S. Luo, Continuous-flow synthesis of an important liquid-crystal intermediate using a microreaction system, Ind. Eng. Chem. Res. 57 (36) (2018) 12113-12121. [5] S. Urgaonkar, J. Verkade, Palladium/proazaphosphatrane-catalyzed amination of aryl halides possessing a phenol, alcohol, acetanilide, amide or an enolizable ketone functional group: Efficacy of lithium bis(trimethylsilyl)amide as the base, Adv. Synth. Catal. 346 (6) (2004) 611-616. [6] D.J. Koza, Y.A. Nsiah, Palladium catalyzed C-N bond formation in the synthesis of 7-amino-substituted tetracyclines, J. Org. Chem. 67 (14) (2002) 5025-5027. [7] C.W. Coley, W.H. Green, K.F. Jensen, Machine learning in computer-aided synthesis planning, Acc. Chem. Res. 51 (5) (2018) 1281-1289. [8] J.A. Keith, V. Vassilev-Galindo, B.Q. Cheng, S. Chmiela, M. Gastegger, K.R. Muller, A. Tkatchenko, Combining machine learning and computational chemistry for predictive insights into chemical systems, Chem. Rev. 121 (16) (2021) 9816-9872. [9] H.X. Mai, T.C. Le, D.H. Chen, D.A. Winkler, R.A. Caruso, Machine learning for electrocatalyst and photocatalyst design and discovery, Chem. Rev. 122 (16) (2022) 13478-13515. [10] M. Christensen, L.P.E. Yunker, P. Shiri, T. Zepel, P.L. Prieto, S. Grunert, F. Bork, J.E. Hein, Automation isn’t automatic, Chem. Sci. 12 (47) (2021) 15473-15490. [11] E.N. Muratov, J. Bajorath, R.P. Sheridan, I.V. Tetko, D. Filimonov, V. Poroikov, T.I. Oprea, I.I. Baskin, A. Varnek, A. Roitberg, O. Isayev, S. Curtarolo, D. Fourches, Y. Cohen, A. Aspuru-Guzik, D.A. Winkler, D. Agrafiotis, A. Cherkasov, A. Tropsha, QSAR without borders, Chem. Soc. Rev. 49 (11) (2020) 3525-3564. [12] K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, A. Walsh, Machine learning for molecular and materials science, Nature 559 (7715) (2018) 547-555. [13] X. Hong, Q. Yang, K.B. Liao, J.F. Pei, M. Chen, F.Y. Mo, H. Lu, W.B. Zhang, H.S. Zhou, J.X. Chen, L.B. Su, S.Q. Zhang, S.Y. Liu, X. Huang, Y.Z. Sun, Y.X. Wang, Z.X. Zhang, Z.Z. Yu, S.Z. Luo, X.F. Fu, S.L. You, AI for organic and polymer synthesis, Sci. China Chem. 67 (8) (2024) 2461-2496. [14] M. Christensen, Y. Xu, E.E. Kwan, M.J. Di Maso, Y. Ji, M. Reibarkh, A.C. Sun, A. Liaw, P.S. Fier, S. Grosser, J.E. Hein, Dynamic sampling in autonomous process optimization, Chem. Sci. 15 (19) (2024) 7160-7169. [15] M. Christensen, L.P.E. Yunker, F. Adedeji, F. Hase, L.M. Roch, T. Gensch, G. Dos Passos Gomes, T. Zepel, M.S. Sigman, A. Aspuru-Guzik, J.E. Hein, Data-science driven autonomous process optimization, Commun. Chem. 4 (1) (2021) 112. [16] E. King-Smith, S. Berritt, L. Bernier, X.J. Hou, J.L. Klug-McLeod, J. Mustakis, N.W. Sach, J.W. Tucker, Q.Y. Yang, R.M. Howard, A.A. Lee, Probing the chemical ‘reactome’ with high-throughput experimentation data, Nat. Chem. 16 (4) (2024) 633-643. [17] J.T. Rapp, B.J. Bremer, P.A. Romero, Self-driving laboratories to autonomously navigate the protein fitness landscape, Nat. Chem. Eng. 1 (1) (2024) 97-107. [18] S.W. Li, L.C. Xu, C. Zhang, S.Q. Zhang, X. Hong, Reaction performance prediction with an extrapolative and interpretable graph model based on chemical knowledge, Nat. Commun. 14 (1) (2023) 3569. [19] Q. Zhu, F. Zhang, Y. Huang, H.Y. Xiao, L.Y. Zhao, X.C. Zhang, T. Song, X.S. Tang, X. Li, G. He, B.C. Chong, J.Y. Zhou, Y.H. Zhang, B.C. Zhang, J.Q. Cao, M. Luo, S. Wang, G.L. Ye, W.J. Zhang, X. Chen, S. Cong, D.L. Zhou, H.R. Li, J.L. Li, G. Zou, W.W. Shang, J. Jiang, Y. Luo, An all-round AI-chemist with a scientific mind, Natl. Sci. Rev. 9 (10) (2022) nwac190. [20] N. Gesmundo, K. Dykstra, J.L. Douthwaite, Y.T. Kao, R.H. Zhao, B. Mahjour, R. Ferguson, S. Dreher, B. Sauvagnat, J. Sauri, T. Cernak, Miniaturization of popular reactions from the medicinal chemists’ toolbox for ultrahigh-throughput experimentation, Nat. Synth. 2 (2023) 1082-1091. [21] H.T. Zhao, W. Chen, H. Huang, Z.H. Sun, Z.J. Chen, L.J. Wu, B.C. Zhang, F.M. Lai, Z. Wang, M.L. Adam, C.H. Pang, P.K. Chu, Y. Lu, T. Wu, J. Jiang, Z.Y. Yin, X.F. Yu, A robotic platform for the synthesis of colloidal nanocrystals, Nat. Synth. 2 (2023) 505-514. [22] D.T. Ahneman, J.G. Estrada, S.S. Lin, S.D. Dreher, A.G. Doyle, Predicting reaction performance in C-N cross-coupling using machine learning, Science 360 (6385) (2018) 186-190. [23] Q. Chen, S. Ullah, Y.J. Wang, G.S. Luo, Controllable generation of multi-row bubbly flow in coupled microstructures and its boosting of photocatalytic decarboxylative carbonylation, Chem. Eng. J. 464 (2023) 142758. [24] Q. Chen, Y.J. Wang, G.S. Luo, Visible-light-driven direct decarboxylative carbonylation of carboxylic acids using acridine photocatalysis in oxygen-liquid flow, Chem. Eng. J. 461 (2023) 141767. [25] Z.Y. Yu, C.Y. Guo, X.M. Pang, Y.G. Shen, M.T. Gao, S.Y. Zhao, Y.J. Wang, G.S. Luo, Coprecipitation synthesis of large-pore-volume γ-alumina nanofibers by two serial membrane dispersion microreactors with a circulating continuous phase, Ind. Eng. Chem. Res. 62 (3) (2023) 1415-1424. [26] M.Z. Guo, S.Q. Bai, Y.J. Wang, G.S. Luo, Novel microfabricated nozzle array with grooves for microdroplet generation, Chem. Eng. J. 416 (2021) 129103. [27] L. Sheng, L. Ma, Y.C. Chen, J. Deng, G.S. Luo, A comprehensive study of droplet formation in a capillary embedded step T-junction: From squeezing to jetting, Chem. Eng. J. 427 (2022) 132067. [28] M. Pathak, Numerical simulation of membrane emulsification: Effect of flow properties in the transition from dripping to jetting, J. Membr. Sci. 382 (1-2) (2011) 166-176. [29] P.M. Korczyk, V. van Steijn, S. Blonski, D. Zaremba, D.A. Beattie, P. Garstecki, Accounting for corner flow unifies the understanding of droplet formation in microfluidic channels, Nat. Commun. 10 (2019) 2528. [30] S. Ullah, Y.Q. Pan, Q.Q. Xue, T.Y. Huang, Y.Z. Hu, R.P. Ye, Y.J. Wang, G.S. Luo, The structure activity relationship of promoted La doped Ni-CeO2 catalysts prepared by continuous-flow microreactor for low temperature CO2 methanation, Fuel 379 (2025) 133034. [31] X.P. Luo, L.H. Du, F. He, C.H. Zhou, Controllable regioselective acylation of flavonoids catalyzed by lipase in microreactors, J. Carbohydr. Chem. 32 (7) (2013) 450-462. [32] Q.L. Xu, G.S. Li, F.C. Zhu, N.D. Chen, C.W. Chen, Z.Q. Yu, Continuous synthesis of N-(3-Amino-4-methylphenyl)benzamide and its kinetics study in microflow system, J. Flow Chem. 12 (3) (2022) 317-325. [33] H.L. Yi, S.L. Lu, J.J. Wu, Y.J. Wang, G.S. Luo, Parallelized microfluidic droplet generators with improved ladder-tree distributors for production of monodisperse γ-Al2O3 microspheres, Particuology 62 (2022) 47-54. [34] F.Y. Zhao, R.H. Yang, J.X. Ma, Y. Gao, Y.J. Wang, G.S. Luo, Alumina microspheres for the adsorption of fatty alcohols containing oxygenates in Fischer-Tropsch synthetic oils, Sep. Purif. Technol. 326 (2023) 124593. [35] J.R. Naber, S.L. Buchwald, Packed-bed reactors for continuous-flow C-N cross-coupling, Angew. Chem. Int. Ed 49 (49) (2010) 9469-9474. [36] M. Chen, S.L. Buchwald, Continuous-flow synthesis of 1-substituted benzotriazoles from chloronitrobenzenes and amines in a C-N bond formation/hydrogenation/diazotization/cyclization sequence, Angew. Chem. Int. Ed 52 (15) (2013) 4247-4250. [37] S. Roesner, S.L. Buchwald, Continuous-flow synthesis of biaryls by negishi cross-coupling of fluoro- and trifluoromethyl-substituted (hetero)arenes, Angew. Chem. Int. Ed 55 (35) (2016) 10463-10467. [38] T. Noel, S.L. Buchwald, Cross-coupling in flow, Chem. Soc. Rev. 40 (10) (2011) 5010-5029. [39] W.C. Fu, T.F. Jamison, Modular continuous flow synthesis of imatinib and analogues, Org. Lett. 21 (15) (2019) 6112-6116. [40] J. Vicente, I. Saura-Llamas, M.J. Oliva-Madrid, J.A. Garcia-Lopez, D. Bautista, A new method for high-yield cyclopalladation of primary and secondary amines. atom-efficient open-to-air inexpensive synthesis of Buchwald-type precatalysts, Organometallics 30 (17) (2011) 4624-4631. [41] P. Yaseneva, P. Hodgson, J. Zakrzewski, S. Falss, R.E. Meadows, A.A. Lapkin, Continuous flow Buchwald-Hartwig amination of a pharmaceutical intermediate, React. Chem. Eng. 1 (2) (2016) 229-238. [42] S. Ullah, T.Y. Huang, Y.Q. Pan, Q.Q. Xue, Z.Y. Yu, Y.Z. Hu, S.M. Ahmed, R.P. Ye, Y.J. Wang, G.S. Luo, Ceria-modified high pore volume Ni/Al2O3 spheres for enhanced low-temperature CO2 methanation, Fuel 390 (2025) 134736. [43] G.M. Whitesides, The origins and the future of microfluidics, Nature 442 (7101) (2006) 368-373. [44] C.W. Coley, D.A. Thomas 3rd, J.A.M. Lummiss, J.N. Jaworski, C.P. Breen, V. Schultz, T. Hart, J.S. Fishman, L. Rogers, H.Y. Gao, R.W. Hicklin, P.P. Plehiers, J. Byington, J.S. Piotti, W.H. Green, A. John Hart, T.F. Jamison, K.F. Jensen, A robotic platform for flow synthesis of organic compounds informed by AI planning, Science 365 (6453) (2019) eaax1566. [45] Y. Xie, G.M. Huang, Y.J. Wang, Z.R. Yan, X. Wang, J. Huang, M.T. Gao, W.Y. Fei, G.S. Luo, Synthesis of piperacillin with low impurity content using a new three-feed membrane dispersion microreactor, Chem. Eng. J. 387 (2020) 124178. [46] H.C. Shi, Y.M. Shi, Z.Q. Liang, S.L. Zhao, B. Qiao, Z. Xu, L.J. Wang, D.D. Song, Machine learning-enabled discovery of multi-resonance TADF molecules: Unraveling PLQY predictions from molecular structures, Chem. Eng. J. 494 (2024) 153150. [47] H.X. Guo, G.S. Jiang, B.W. Diao, J.J. Du, W. Sun, J.L. Fan, X.J. Peng, An integrated screening approach for designing efficient thermally activated delayed fluorescent materials for OLEDs, J. Mater. Chem. C 12 (36) (2024) 14515-14522. [48] R. Gomez-Bombarelli, J. Aguilera-Iparraguirre, T.D. Hirzel, D. Duvenaud, D. Maclaurin, M.A. Blood-Forsythe, H.S. Chae, M. Einzinger, D.G. Ha, T. Wu, G. Markopoulos, S. Jeon, H. Kang, H. Miyazaki, M. Numata, S. Kim, W. Huang, S.I. Hong, M. Baldo, R.P. Adams, A.. Aspuru-Guzik, Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach, Nat. Mater. 15 (10) (2016) 1120-1127. [49] B.P. MacLeod, F.G.L. Parlane, C.C. Rupnow, K.E. Dettelbach, M.S. Elliott, T.D. Morrissey, T.H. Haley, O. Proskurin, M.B. Rooney, N. Taherimakhsousi, D.J. Dvorak, H.N. Chiu, C.E.B. Waizenegger, K. Ocean, M. Mokhtari, C.P. Berlinguette, A self-driving laboratory advances the Pareto front for material properties, Nat. Commun. 13 (1) (2022) 995. [50] S.D. Xu, J.L. Li, P.F. Cai, X.L. Liu, B. Liu, X.N. Wang, Self-improving photosensitizer discovery system via Bayesian search with first-principle simulations, J. Am. Chem. Soc. 143 (47) (2021) 19769-19777. [51] J.K. Sun, R. Tu, Y.C. Xu, H.Y. Yang, T. Yu, D. Zhai, X.Q. Ci, W.Q. Deng, Machine learning aided design of single-atom alloy catalysts for methane cracking, Nat. Commun. 15 (1) (2024) 6036. [52] M. Zhong, K. Tran, Y.M. Min, C.H. Wang, Z.Y. Wang, C.T. Dinh, P. De Luna, Z.Q. Yu, A.S. Rasouli, P. Brodersen, S. Sun, O. Voznyy, C.S. Tan, M. Askerka, F.L. Che, M. Liu, A. Seifitokaldani, Y.J. Pang, S.C. Lo, A. Ip, Z. Ulissi, E.H. Sargent, Accelerated discovery of CO2 electrocatalysts using active machine learning, Nature 581 (7807) (2020) 178-183. [53] X. Song, P.X. Pu, H.S. Feng, H. Ding, Y. Deng, Z. Ge, S.Q. Zhao, T.Y. Liu, Y.S. Yang, M. Wei, X. Zhang, Integrating active learning and DFT for fast-tracking single-atom alloy catalysts in CO2-to-fuel conversion, ACS Appl. Mater. Interfaces (2024). [54] K. Tran, Z.W. Ulissi, Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution, Nat. Catal. 1 (2018) 696-703. [55] X.H. Ge, J. Yin, Z.H. Ren, K.L. Yan, Y.D. Jing, Y.Q. Cao, N.N. Fei, X. Liu, X.N. Wang, X.G. Zhou, L.W. Chen, W.K. Yuan, X.Z. Duan, Atomic design of alkyne semihydrogenation catalysts via active learning, J. Am. Chem. Soc. 146 (7) (2024) 4993-5004. [56] P.P. Zhang, J. Eun, M. Elkin, Y.Z. Zhao, R.L. Cantrell, T.R. Newhouse, A neural network model informs the total synthesis of clovane sesquiterpenoids, Nat. Synth. 2 (2023) 527-534. [57] J.A. Bennett, N. Orouji, M. Khan, S. Sadeghi, J. Rodgers, M. Abolhasani, Autonomous reaction Pareto-front mapping with a self-driving catalysis laboratory, Nat. Chem. Eng. 1 (2024) 240-250. [58] Y.Q. Pan, Q.F. Xiao, F.Y. Zhao, Z.H. Li, J.Y. Liu, S. Ullah, K.H. Lim, T.Y. Huang, Z.Y. Yu, C. Li, D.Y. Zhang, Q.Q. Xue, Q. Chen, S. Kawi, Y.J. Wang, G.S. Luo, Chat-microreactor: A large-language-model-based assistant for designing continuous flow systems, Chem. Eng. Sci. 311 (2025) 121567. [59] Y.F. Shi, Z.X. Yang, S.C. Ma, P.L. Kang, C. Shang, P. Hu, Z.P. Liu, Machine learning for chemistry: Basics and applications, Engineering 27 (2023) 70-83. [60] A.J. Myles, R.N. Feudale, Y. Liu, N.A. Woody, S.D. Brown, An introduction to decision tree modeling, J. Chemom. 18 (6) (2004) 275-285. [61] Y.C. Lo, S.E. Rensi, W. Torng, R.B. Altman, Machine learning in chemoinformatics and drug discovery, Drug Discov. Today 23 (8) (2018) 1538-1546. [62] A. Kadiyala, A. Kumar, Applications of Python to evaluate the performance of bagging methods, Environ. Prog. Sustain. Energy 37 (5) (2018) 1555-1559. [63] J.B.O. Mitchell, Machine learning methods in chemoinformatics, Wiley Interdiscip. Rev. Comput. Mol. Sci. 4 (5) (2014) 468-481. [64] B.Z. Dou, Z.L. Zhu, E. Merkurjev, L. Ke, L. Chen, J. Jiang, Y.Y. Zhu, J. Liu, B.G. Zhang, G.W. Wei, Machine learning methods for small data challenges in molecular science, Chem. Rev. 123 (13) (2023) 8736-8780. [65] A. Jetybayeva, N. Borodinov, A.V. Ievlev, M.I.U. Haque, J. Hinkle, W.A. Lamberti, J.C. Meredith, D. Abmayr, O.S. Ovchinnikova, A review on recent machine learning applications for imaging mass spectrometry studies, J. Appl. Phys. 133 (2) (2023) 020702. [66] B. Niu, Y.H. Jin, L. Lu, K.Y. Fen, L. Gu, Z.S. He, W.C. Lu, Y.X. Li, Y.D. Cai, Prediction of interaction between small molecule and enzyme using AdaBoost, Mol. Divers. 13 (3) (2009) 313-320. [67] Z.W. Ge, S. Feng, C.C. Ma, K. Wei, K. Hu, W.J. Zhang, X.J. Dai, L.F. Fan, J.H. Hua, Quantifying and comparing the effects of key chemical descriptors on metal-organic frameworks water stability with CatBoost and SHAP, Microchem. J. 196 (2024) 109625. [68] G.B. Goh, N.O. Hodas, A. Vishnu, Deep learning for computational chemistry, J. Comput. Chem. 38 (16) (2017) 1291-1307. [69] Artificial neural networks: applications in chemical engineering. [70] J. Bernal, K. Kushibar, D.S. Asfaw, S. Valverde, A. Oliver, R. Marti, X. Llado, Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: A review, Artif. Intell. Med. 95 (2019) 64-81. [71] L.Y. Chen, S.B. Li, Q. Bai, J. Yang, S.L. Jiang, Y.M. Miao, Review of image classification algorithms based on convolutional neural networks, Remote. Sens. 13 (22) (2021) 4712. [72] S. Wu, K. Roberts, S. Datta, J.C. Du, Z.C. Ji, Y.Q. Si, S. Soni, Q. Wang, Q. Wei, Y. Xiang, B. Zhao, H. Xu, Deep learning in clinical natural language processing: A methodical review, J. Am. Med. Inform. Assoc. 27 (3) (2020) 457-470. [73] X.P. Qiu, T.X. Sun, Y.G. Xu, Y.F. Shao, N. Dai, X.J. Huang, Pre-trained models for natural language processing: A survey, Sci. China Technol. Sci. 63 (10) (2020) 1872-1897. [74] L.Q. Huang, R.C. Luo, X. Liu, X. Hao, Spectral imaging with deep learning, Light Sci. Appl. 11 (1) (2022) 61. [75] X.Y. Liu, H.L. An, W.S. Cai, X.G. Shao, Deep learning in spectral analysis: Modeling and imaging, Trac Trends Anal. Chem. 172 (2024) 117612. [76] Q.Y. Xu, W.L. Du, J.J. Xu, J.K. Dong, Neural network-based source tracking of chemical leaks with obstacles, Chin. J. Chem. Eng. 33 (2021) 211-220. [77] X.Y. Li, Y.Q. Xu, H.Q. Yao, K.J. Lin, Chemical space exploration based on recurrent neural networks: Applications in discovering kinase inhibitors, J. Cheminform. 12 (1) (2020) 42. [78] K.D. Luong, A. Singh, Application of transformers in cheminformatics, J. Chem. Inf. Model. 64 (11) (2024) 4392-4409. [79] J. Jiang, L. Ke, L. Chen, B.Z. Dou, Y.Y. Zhu, J. Liu, B.G. Zhang, T.S. Zhou, G.W. Wei, Transformer technology in molecular science, Wiley Interdiscip. Rev. Comput. Mol. Sci. 14 (4) (2024) e1725. [80] Y.Q. Han, X.Y. Xu, C.Y. Hsieh, K.Y. Ding, H.X. Xu, R.J. Xu, T.J. Hou, Q. Zhang, H.J. Chen, Retrosynthesis prediction with an iterative string editing model, Nat. Commun. 15 (1) (2024) 6404. [81] OpenAi, J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F.L. Aleman, D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat, R. Avila, I. Babuschkin, S. Balaji, V. Balcom, P. Baltescu, H. Bao, M. Bavarian, J. Belgum, I. Bello, J. Berdine, G. Bernadett-Shapiro, C. Berner, L. Bogdonoff, O. Boiko, M. Boyd, A.-L. Brakman, G. Brockman, T. Brooks, M. Brundage, K. Button, T. Cai, R. Campbell, A. Cann, B. Carey, C. Carlson, R. Carmichael, B. Chan, C. Chang, F. Chantzis, D. Chen, S. Chen, R. Chen, J. Chen, M. Chen, B. Chess, C. Cho, C. Chu, H.W. Chung, D. Cummings, J. Currier, Y. Dai, C. Decareaux, T. Degry, N. Deutsch, D. Deville, A. Dhar, D. Dohan, S. Dowling, S. Dunning, A. Ecoffet, A. Eleti, T. Eloundou, D. Farhi, L. Fedus, N. Felix, S.P. Fishman, J. Forte, I. Fulford, L. Gao, E. Georges, C. Gibson, V. Goel, T. Gogineni, G. Goh, R. Gontijo-Lopes, J. Gordon, M. Grafstein, S. Gray, R. Greene, J. Gross, S.S. Gu, Y. Guo, C. Hallacy, J. Han, J. Harris, Y. He, M. Heaton, J. Heidecke, C. Hesse, A. Hickey, W. Hickey, P. Hoeschele, B. Houghton, K. Hsu, S. Hu, X. Hu, J. Huizinga, S. Jain, S. Jain, J. Jang, A. Jiang, R. Jiang, H. Jin, D. Jin, S. Jomoto, B. Jonn, H. Jun, T. Kaftan, L. Kaiser, A. Kamali, I. Kanitscheider, N.S. Keskar, T. Khan, L. Kilpatrick, J.W. Kim, C. Kim, Y. Kim, J.H. Kirchner, J. Kiros, M. Knight, D. Kokotajlo, L. Kondraciuk, A. Kondrich, A. Konstantinidis, K. Kosic, G. Krueger, V. Kuo, M. Lampe, I. Lan, T. Lee, J. Leike, J. Leung, D. Levy, C.M. Li, R. Lim, M. Lin, S. Lin, M. Litwin, T. Lopez, R. Lowe, P. Lue, A. Makanju, K. Malfacini, S. Manning, T. Markov, Y. Markovski, B. Martin, K. Mayer, A. Mayne, B. McGrew, S.M. McKinney, C. McLeavey, P. McMillan, J. McNeil, D. Medina, A. Mehta, J. Menick, L. Metz, A. Mishchenko, P. Mishkin, V. Monaco, E. Morikawa, D. Mossing, T. Mu, M. Murati, O. Murk, D. Mely, A. Nair, R. Nakano, R. Nayak, A. Neelakantan, R. Ngo, H. Noh, L. Ouyang, C. O'Keefe, J. Pachocki, A. Paino, J. Palermo, A. Pantuliano, G. Parascandolo, J. Parish, E. Parparita, A. Passos, M. Pavlov, A. Peng, A. Perelman, F. de Avila Belbute Peres, M. Petrov, H.P. de Oliveira Pinto, Michael, Pokorny, M. Pokrass, V.H. Pong, T. Powell, A. Power, B. Power, E. Proehl, R. Puri, A. Radford, J. Rae, A. Ramesh, C. Raymond, F. Real, K. Rimbach, C. Ross, B. Rotsted, H. Roussez, N. Ryder, M. Saltarelli, T. Sanders, S. Santurkar, G. Sastry, H. Schmidt, D. Schnurr, J. Schulman, D. Selsam, K. Sheppard, T. Sherbakov, J. Shieh, S. Shoker, P. Shyam, S. Sidor, E. Sigler, M. Simens, J. Sitkin, K. Slama, I. Sohl, B. Sokolowsky, Y. Song, N. Staudacher, F.P. Such, N. Summers, I. Sutskever, J. Tang, N. Tezak, M.B. Thompson, P. Tillet, A. Tootoonchian, E. Tseng, P. Tuggle, N. Turley, J. Tworek, J.F.C. Uribe, A. Vallone, A. Vijayvergiya, C. Voss, C. Wainwright, J.J. Wang, A. Wang, B. Wang, J. Ward, J. Wei, C.J. Weinmann, A. Welihinda, P. Welinder, J. Weng, L. Weng, M. Wiethoff, D. Willner, C. Winter, S. Wolrich, H. Wong, L. Workman, S. Wu, J. Wu, M. Wu, K. Xiao, T. Xu, S. Yoo, K. Yu, Q. Yuan, W. Zaremba, R. Zellers, C. Zhang, M. Zhang, S. Zhao, T. Zheng, J. Zhuang, W. Zhuk, B. Zoph, GPT-4 Technical Report. 2024. |