[1] T. Okawa, Y. Aramaki, M. Yamamoto, T. Kobayashi, S. Fukumoto, Y. Toyoda, T. Henta, A. Hata, S. Ikeda, M. Kaneko, I.D. Hoffman, B.C. Sang, H. Zou, T. Kawamoto, Design, synthesis, and evaluation of the highly selective and potent G-protein-coupled receptor kinase 2 (GRK2) inhibitor for the potential treatment of heart failure, J. Med. Chem. 60 (16) (2017) 6942-6990. [2] A. Cannavo, D. Liccardo, W.J. Koch, Targeting cardiac β-adrenergic signaling via GRK2 inhibition for heart failure therapy, Front. Physiol. 4 (2013) 264. [3] G. Rengo, A. Lymperopoulos, D. Leosco, W.J. Koch, GRK2 as a novel gene therapy target in heart failure, J. Mol. Cell. Cardiol. 50 (5) (2011) 785-792. [4] C.D. Kemp, J.V. Conte, The pathophysiology of heart failure, Cardiovasc. Pathol. 21 (5) (2012) 365-371. [5] E.R. Chemaly, R.J. Hajjar, L. Lipskaia, Molecular targets of current and prospective heart failure therapies, Heart 99 (14) (2013) 992-1003. [6] P.S. Chaggar, C.J. Malkin, S.M. Shaw, S.G. Williams, K.S. Channer, Neuroendocrine effects on the heart and targets for therapeutic manipulation in heart failure, Cardiovasc. Ther. 27 (3) (2009) 187-193. [7] P.W. Raake, L.E. Vinge, E.H. Gao, M. Boucher, G. Rengo, X.W. Chen, B.R. DeGeorge Jr, S. Matkovich, S.R. Houser, P. Most, A.D. Eckhart, G.W. Dorn 2nd, W.J. Koch, G protein-coupled receptor kinase 2 ablation in cardiac myocytes before or after myocardial infarction prevents heart failure, Circ. Res. 103 (4) (2008) 413-422. [8] W.J. Koch, H.A. Rockman, P. Samama, R.A. Hamilton, R.A. Bond, C.A. Milano, R.J. Lefkowitz, Cardiac function in mice overexpressing the beta-adrenergic receptor kinase or a beta ARK inhibitor, Science 268 (5215) (1995) 1350-1353. [9] J.A. Hata, M.L. Williams, J.N. Schroder, B. Lima, J.R. Keys, B.C. Blaxall, J.A. Petrofski, A. Jakoi, C.A. Milano, W.J. Koch, Lymphocyte levels of GRK2 (betaARK1) mirror changes in the LVAD-supported failing human heart: lower GRK2 associated with improved beta-adrenergic signaling after mechanical unloading, J. Card. Fail. 12 (5) (2006) 360-368. [10] K. Leineweber, S. Klapproth, A. Beilfuss, R.E. Silber, G. Heusch, T. Philipp, O.E. Brodde, Unchanged G-protein-coupled receptor kinase activity in the aging human heart, J. Am. Coll. Cardiol. 42 (8) (2003) 1487-1492. [11] G. Iaccarino, E. Barbato, E. Cipolletta, V. De Amicis, K.B. Margulies, D. Leosco, B. Trimarco, W.J. Koch, Elevated myocardial and lymphocyte GRK2 expression and activity in human heart failure, Eur. Heart J. 26 (17) (2005) 1752-1758. [12] D. Sorriento, M. Ciccarelli, E. Cipolletta, B. Trimarco, G. Iaccarino, “Freeze, don’t move”: how to arrest a suspect in heart failure - A review on available GRK2 inhibitors, Front. Cardiovasc. Med. 3 (2016) 48. [13] F. Cheng, H. Liang, A.J. Butte, C. Eng, R. Nussinov, Personal mutanomes meet modern oncology drug discovery and precision health, Pharmacol. Rev. 71 (1) (2019) 1-19. [14] B.J. Neves, R.C. Braga, C.C. Melo-Filho, J.T. Moreira-Filho, E.N. Muratov, C.H. Andrade, QSAR-based virtual screening: advances and applications in drug discovery, Front. Pharmacol. 9 (2018) 1275. [15] N. Kalsi, C. Gopalakrishnan, V. Rajendran, R. Purohit, Biophysical aspect of phosphatidylinositol 3-kinase and role of oncogenic mutants (E542K & E545K), J. Biomol. Struct. Dyn. 34 (12) (2016) 2711-2721. [16] R. Singh, R. Purohit, Computational analysis of protein-ligand interaction by targeting a cell cycle restrainer, Comput. Methods Programs Biomed. 231 (2023) 107367. [17] V.K. Bhardwaj, R. Purohit, A comparative study on inclusion complex formation between formononetin and β-cyclodextrin derivatives through multiscale classical and umbrella sampling simulations, Carbohydr. Polym. 310 (2023) 120729. [18] V. Bhardwaj, R. Singh, P. Singh, R. Purohit, S. Kumar, Elimination of bitter-off taste of stevioside through structure modification and computational interventions, J. Theor. Biol. 486 (2020) 110094. [19] R. Singh, V.K. Bhardwaj, J. Sharma, P. Das, R. Purohit, Identification of selective cyclin-dependent kinase 2 inhibitor from the library of pyrrolone-fused benzosuberene compounds: an in silico exploration, J. Biomol. Struct. Dyn. 40 (17) (2022) 7693-7701. [20] R. Singh, V.K. Bhardwaj, R. Purohit, Inhibition of nonstructural protein 15 of SARS-CoV-2 by golden spice: a computational insight, Cell Biochem. Funct. 40 (8) (2022) 926-934. [21] G. Schneider, U. Fechner, Computer-based de novo design of drug-like molecules, Nat. Rev. Drug Discov. 4 (8) (2005) 649-663. [22] M.H.S. Segler, T. Kogej, C. Tyrchan, M.P. Waller, Generating focused molecule libraries for drug discovery with recurrent neural networks, ACS Cent. Sci. 4 (1) (2018) 120-131. [23] Y.J. Zhao, Q.L. Liu, X.Y. Wu, L. Zhang, J. Du, Q.W. Meng, De novo drug design framework based on mathematical programming method and deep learning model, AlChE. J. 68 (9) (2022) e17748. [24] Q.L. Liu, L. Zhang, L.L. Liu, J. Du, A.K. Tula, M. Eden, R. Gani, OptCAMD: an optimization-based framework and tool for molecular and mixture product design, Comput. Chem. Eng. 124 (2019) 285-301. [25] H. Eckert, J. Bajorath, Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches, Drug Discov. Today 12 (5-6) (2007) 225-233. [26] P. Ertl, A. Schuffenhauer, Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions, J. Cheminform. 1 (1) (2009) 8. [27] C.W. Coley, L. Rogers, W.H. Green, K.F. Jensen, SCScore: synthetic complexity learned from a reaction corpus, J. Chem. Inf. Model. 58 (2) (2018) 252-261. [28] G. Madhavi Sastry, M. Adzhigirey, T. Day, R. Annabhimoju, W. Sherman, Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments, J. Comput. Aided Mol. Des. 27 (3) (2013) 221-234. [29] M.P. Jacobson, D.L. Pincus, C.S. Rapp, T.J.F. Day, B. Honig, D.E. Shaw, R.A. Friesner, A hierarchical approach to all-atom protein loop prediction, Proteins 55 (2) (2004) 351-367. [30] M.P. Jacobson, R.A. Friesner, Z.X. Xiang, B. Honig, On the role of the crystal environment in determining protein side-chain conformations, J. Mol. Biol. 320 (3) (2002) 597-608. [31] E. Harder, W. Damm, J. Maple, C. Wu, M. Reboul, J.Y. Xiang, L. Wang, D. Lupyan, M.K. Dahlgren, J.L. Knight, J.W. Kaus, D.S. Cerutti, G. Krilov, W.L. Jorgensen, R. Abel, R.A. Friesner, OPLS3: a force field providing broad coverage of drug-like small molecules and proteins, J. Chem. Theory Comput. 12 (1) (2016) 281-296. [32] R.A. Friesner, R.B. Murphy, M.P. Repasky, L.L. Frye, J.R. Greenwood, T.A. Halgren, P.C. Sanschagrin, D.T. Mainz, Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes, J. Med. Chem. 49 (21) (2006) 6177-6196. [33] H.J.C. Berendsen, D. van der Spoel, R. van Drunen, GROMACS: a message-passing parallel molecular dynamics implementation, Comput. Phys. Commun. 91 (1-3) (1995) 43-56. [34] H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, Molecular dynamics with coupling to an external bath, 81 (8) (1984) 3684-3690. [35] M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: a new molecular dynamics method, J. Appl. Phys. 52 (12) (1981) 7182-7190. [36] B. Hess, P-LINCS: a parallel linear constraint solver for molecular simulation, J. Chem. Theory Comput. 4 (1) (2008) 116-122. [37] C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev. 46 (1-3) (2001) 3-26. [38] A.T. Karunanithi, L.E.K. Achenie, R. Gani, A new decomposition-based computer-aided molecular/mixture design methodology for the design of optimal solvents and solvent mixtures, Ind. Eng. Chem. Res. 44 (13) (2005) 4785-4797. [39] P. Penela, C. Murga, C. Ribas, V. Lafarga, F. Mayor Jr, The complex G protein-coupled receptor kinase 2 (GRK2) interactome unveils new physiopathological targets, Br. J. Pharmacol. 160 (4) (2010) 821-832. [40] Y.H. Wu, S.Z. Wang, H.X. Wang, B.C. Hu, J. Wang, Selectivity mechanism of GRK2/5 inhibition through in silico investigation, Comput. Biol. Chem. 101 (2022) 107786. [41] K.T. Homan, J.J.G. Tesmer, Molecular basis for small molecule inhibition of G protein-coupled receptor kinases, ACS Chem. Biol. 10 (1) (2015) 246-256. [42] J.J.G. Tesmer, V.M. Tesmer, D.T. Lodowski, H. Steinhagen, J. Huber, Structure of human G protein-coupled receptor kinase 2 in complex with the kinase inhibitor balanol, J. Med. Chem. 53 (4) (2010) 1867-1870. [43] D.M. Thal, R.Y. Yeow, C. Schoenau, J. Huber, J.J.G. Tesmer, Molecular mechanism of selectivity among G protein-coupled receptor kinase 2 inhibitors, Mol. Pharmacol. 80 (2) (2011) 294-303. [44] D.M. Thal, K.T. Homan, J. Chen, E.K. Wu, P.M. Hinkle, Z. Maggie Huang, J. Kurt Chuprun, J.L. Song, E.H. Gao, J.Y. Cheung, L.A. Sklar, W.J. Koch, J.J.G. Tesmer, Paroxetine is a direct inhibitor of g protein-coupled receptor kinase 2 and increases myocardial contractility, ACS Chem. Biol. 7 (11) (2012) 1830-1839. [45] S.Y. Cho, B.H. Lee, H. Jung, C.S. Yun, J.D. Ha, H.R. Kim, C.H. Chae, J.H. Lee, H.W. Seo, K.S. Oh, Design and synthesis of novel 3-(benzo [d] oxazol-2-yl)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl)pyridin-2-amine derivatives as selective G-protein-coupled receptor kinase-2 and-5 inhibitors, Bioorg. Med. Chem. Lett. 23 (24) (2013) 6711-6716. [46] H.V. Waldschmidt, K.T. Homan, M.C. Cato, O. Cruz-Rodriguez, A. Cannavo, M.W. Wilson, J.L. Song, J.Y. Cheung, W.J. Koch, J.J.G. Tesmer, S.D. Larsen, Structure-based design of highly selective and potent G protein-coupled receptor kinase 2 inhibitors based on paroxetine, J. Med. Chem. 60 (7) (2017) 3052-3069. [47] W.L. Ye, S.Q. Yang, L.X. Zhang, Z.K. Deng, W.Q. Li, J.W. Zhang, L. Zhang, Y.H. Yun, A.F. Chen, D.S. Cao, Multistep virtual screening for rapid identification of G Protein-Coupled Receptors Kinase 2 inhibitors for heart failure treatment, Chemom. Intell. Lab. Syst. 185 (2019) 32-40. [48] M. Guccione, R. Ettari, S. Taliani, F. Da Settimo, M. Zappala, S. Grasso, G-protein-coupled receptor kinase 2 (GRK2) inhibitors: current trends and future perspectives, J. Med. Chem. 59 (20) (2016) 9277-9294. [49] Y. Zhao, Q. Liu, J. Du, Q. Meng, L. Zhang, Machine learning methods for developments of binding kinetic models in predicting protein-ligand dissociation rate constants, Smart Molecules 1 (3) (2023) e20230012. [50] Y. Zhao, L. Zhang, J. Du, Q. Meng, L. Zhang, H. Wang, L. Sun, Q. Liu, Mixture-of-Experts Based Dissociation Kinetic Model for De Novo Design of HSP90 Inhibitors with Prolonged Residence Time, J Chem Inf Model 64 (22) (2024) 8427–8439. |