中国化学工程学报 ›› 2025, Vol. 86 ›› Issue (10): 87-103.DOI: 10.1016/j.cjche.2025.07.003
• Special Issue on Celebrating the 100th Anniversary of the School of Chemical Engineering and Technology of Tianjin University • 上一篇 下一篇
Kaisheng Xiao1, Siyu Sun1, Jing Xu2, Xiang Ma1
收稿日期:2025-03-30
修回日期:2025-07-03
接受日期:2025-07-04
出版日期:2025-10-28
发布日期:2025-08-07
通讯作者:
Jing Xu,E-mail:xujing@ecust.edu.cn;Xiang Ma,E-mail:maxiang@ecust.edu.cn
基金资助:Kaisheng Xiao1, Siyu Sun1, Jing Xu2, Xiang Ma1
Received:2025-03-30
Revised:2025-07-03
Accepted:2025-07-04
Online:2025-10-28
Published:2025-08-07
Contact:
Jing Xu,E-mail:xujing@ecust.edu.cn;Xiang Ma,E-mail:maxiang@ecust.edu.cn
Supported by:摘要: Bio-based organic room-temperature phosphorescence (RTP) materials have drawn considerable interest due to their potential to replace conventional petroleum-based RTP materials and attain comprehensive full life-cycle carbon reduction, a feat attributable to their renewable, biocompatible, and environmentally friendly characteristics. Bio-based organic RTP materials derived from natural biomass (e.g., cellulose, lignin, chitosan) or biologically produced substances possess the capacity to spontaneously generate RTP or contribute to its generation. In this paper, the development lineage of bio-based RTP materials is introduced from the above two directions, including different systems, how to construct such systems, and the current progress. With strategies including hydrogen bonding networks, host-guest encapsulation, and polymeric matrices, it achieves RTP lifetimes up to seconds and full visible-band emission. It then explores the application scenarios that emerge from the natural advantages of these materials, including anti-counterfeiting and encryption, environmental monitoring, and bioimaging. Finally, it briefly discusses the potential challenges associated with bio-based RTP materials and envisions future development directions for them. While bio-based RTP materials rival petroleum-based counterparts in RTP efficiency, challenges persist: high production costs, poor environmental/thermal stability, and balancing degradability with durability. These sustainable alternatives offer biodegradability, renewability, and reduced lifecycle carbon emissions, utilizing agricultural byproducts (e.g., corn stalks, shrimp shells) to enhance circular economies.
Kaisheng Xiao, Siyu Sun, Jing Xu, Xiang Ma. Advances in bio-based organic room-temperature phosphorescent materials from preparation to emerging applications[J]. 中国化学工程学报, 2025, 86(10): 87-103.
Kaisheng Xiao, Siyu Sun, Jing Xu, Xiang Ma. Advances in bio-based organic room-temperature phosphorescent materials from preparation to emerging applications[J]. Chinese Journal of Chemical Engineering, 2025, 86(10): 87-103.
| [1] M. Wang, W.M. Yin, Y.X. Zhai, J.Y. Zhou, S.X. Liu, J. Li, S.J. Li, T.D. James, Z.J. Chen, Solvent-free processing of lignin into robust room temperature phosphorescent materials, Nat. Commun. 16 (1) (2025) 2455. [2] Q.G. Chen, L.J. Qu, H. Hou, J.Y. Huang, C. Li, Y. Zhu, Y.K. Wang, X.H. Chen, Q. Zhou, Y. Yang, C.L. Yang, Long lifetimes white afterglow in slightly crosslinked polymer systems, Nat. Commun. 15 (1) (2024) 2947. [3] J.Y. Zhang, S. Xu, Z.J. Wang, P.R. Xue, W.J. Wang, L.Y. Zhang, Y.Q. Shi, W. Huang, R.F. Chen, Stimuli-responsive deep-blue organic ultralong phosphorescence with lifetime over 5 s for reversible water-jet anti-counterfeiting printing, Angew. Chem. Int. Ed. 60 (31) (2021) 17094-17101. [4] X.L. Nie, Y. Zhang, B. Wu, Z.Y. Ye, F. Gao, Y.X. Chen, C.F. Wang, D.L. Zhu, P. Alam, Z.J. Qiu, B.Z. Tang, Dynamic chirality in nature-inspired photonic crystal films: Ultralong room temperature phosphorescence and stimuli-responsive circularly polarized luminescence, ACS Nano 19 (11) (2025) 11221-11229. [5] H.Q. Gao, T.T. Zhang, Y.X. Lei, D. Jiao, B. Yu, W.Z. Yuan, J. Ji, Q. Jin, D. Ding, An organophosphorescence probe with ultralong lifetime and intrinsic tissue selectivity for specific tumor imaging and guided tumor surgery, Angew. Chem. Int. Ed. 63 (42) (2024) e202406651. [6] J. Gu, W. Yuan, K. Chang, C. Zhong, Y. Yuan, J. Li, Y. Zhang, T. Deng, Y. Fan, L. Yuan, S. Liu, Y. Xu, S. Ling, C. Li, Z. Zhao, Q. Li, Z. Li, B.Z. Tang, Organic materials with ultrabright phosphorescence at room temperature under physiological conditions for bioimaging, Angew. Chem. Int. Ed. 64 (3) (2025) e202415637. [7] J.S. Cheng, H. Sun, L.L. Zhou, G.V. Baryshnikov, M.W. Liu, S. Shen, H. Agren, L.L. Zhu, Electrostatic interaction-mediated 1: 1 complexes for high-contrast mitochondrial-targeted phosphorescence bioimaging, Sci. China Chem. 67 (10) (2024) 3406-3413. [8] T.Y. Zhou, T.W. Li, H.F. Zhang, R.L. Chai, Q. Zhao, P.L. Zhang, G.Y. Li, Q.W. Wang, C. Li, Y. Shu, Z. Fan, S.H. Li, Laser-rewritable room temperature phosphorescence based on in situ polymerized tartaric acid, Sci. China Chem. 67 (9) (2024) 3029-3038. [9] X. Peng, P. Zou, J. Zeng, X. Wu, D. Xie, Y. Fu, D. Yang, D. Ma, B.Z. Tang, Z. Zhao, Purely organic room-temperature phosphorescence molecule for high-performance non-doped organic light-emitting diodes, Angew. Chem. Int. Ed. 63 (29) (2024) e202405418. [10] T. Wang, X.G. Su, X.P. Zhang, X.C. Nie, L.K. Huang, X.Y. Zhang, X. Sun, Y. Luo, G.Q. Zhang, Aggregation-induced dual-phosphorescence from organic molecules for nondoped light-emitting diodes, Adv. Mater. 31 (51) (2019) e1904273. [11] T. Aitasalo, P. Deren, J. Holsa, H. Jungner, J.C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, W. Strek, Persistent luminescence phenomena in materials doped with rare earth ions, J. Solid State Chem. 171 (1-2) (2003) 114-122. [12] D. Liu, W.J. Wang, P. Alam, Z. Yang, K.W. Wu, L.X. Zhu, Y. Xiong, S. Chang, Y. Liu, B. Wu, Q. Wu, Z.J. Qiu, Z. Zhao, B.Z. Tang, Highly efficient circularly polarized near-infrared phosphorescence in both solution and aggregate, Nat. Photonics 18 (2024) 1276-1284. [13] C.L. Chen, W.J. Zhang, Z. Wang, X. Wang, J.H. Yang, Y. Ren, Z.Q. Huang, W.B. Dai, X.B. Huang, Y.X. Lei, Large-area, ultra-thin organic films with both photochromic and phosphorescence properties, Angew. Chem. Int. Ed. 64 (18) (2025) e202501448. [14] Y.F. Zhang, Y. Su, H.W. Wu, Z.H. Wang, C. Wang, Y. Zheng, X. Zheng, L. Gao, Q. Zhou, Y. Yang, X.H. Chen, C.L. Yang, Y.L. Zhao, Large-area, flexible, transparent, and long-lived polymer-based phosphorescence films, J. Am. Chem. Soc. 143 (34) (2021) 13675-13685. [15] F.M. Xiao, H.Q. Gao, Y.X. Lei, W.B. Dai, M.C. Liu, X.Y. Zheng, Z.X. Cai, X.B. Huang, H.Y. Wu, D. Ding, Guest-host doped strategy for constructing ultralong-lifetime near-infrared organic phosphorescence materials for bioimaging, Nat. Commun. 13 (1) (2022) 186. [16] Y. Li, Z.Q. Wu, Z.Z. Huang, C.J. Yin, H. Tian, X. Ma, Activatable red/near-infrared aqueous organic phosphorescence probes for improved time-resolved bioimaging, Natl. Sci. Rev. 12 (2) (2024) nwae383. [17] W.B. Dai, X.W. Niu, X.H. Wu, Y. Ren, Y.F. Zhang, G.C. Li, H. Su, Y.X. Lei, J.W. Xiao, J.B. Shi, B. Tong, Z.X. Cai, Y.P. Dong, Halogen bonding: A new platform for achieving multi-stimuli-responsive persistent phosphorescence, Angew. Chem. Int. Ed. 61 (13) (2022) e202200236. [18] Z. Yang, C. Xu, W. Li, Z. Mao, X. Ge, Q. Huang, H. Deng, J. Zhao, F.L. Gu, Y. Zhang, Z. Chi, Boosting the quantum efficiency of ultralong organic phosphorescence up to 52% via intramolecular halogen bonding, Angew. Chem. Int. Ed. 59 (40) (2020) 17451-17455. [19] X.G. Yang, D.P. Yan, Long-afterglow metal-organic frameworks: Reversible guest-induced phosphorescence tunability, Chem. Sci. 7 (7) (2016) 4519-4526. [20] L.F. Zeng, Z.C. Zhu, R.Q. Mo, W. Li, W.L. Xu, D. Tian, Luminescence lifetime tuning of non-conjugated organic clusters through external heavy-atom effect for smartphone-based time-resolved imaging, Chem. Eng. J. 460 (2023) 141452. [21] F. Peng, Y.A. Chen, H.C. Liu, P. Chen, F. Peng, H.S. Qi, Color-tunable, excitation-dependent, and water stimulus-responsive room-temperature phosphorescence cellulose for versatile applications, Adv. Mater. 35 (46) (2023) e2304032. [22] Y.X. Zhai, S.J. Li, J. Li, S.X. Liu, T.D. James, J.L. Sessler, Z.J. Chen, Room temperature phosphorescence from natural wood activated by external chloride anion treatment, Nat. Commun. 14 (1) (2023) 2614. [23] Z.C. Zhu, L.F. Zeng, W. Li, W.L. Xu, D. Tian, Efficient persistent luminescence from cellulose-halide mixtures for optical encryption, ACS Sustain. Chem. Eng. 10 (50) (2022) 16752-16759. [24] J.M. Song, Y.H. Zhou, Z.C. Pan, Y. Hu, Z.Y. He, H. Tian, X. Ma, An elastic organic crystal with multilevel stimuli-responsive room temperature phosphorescence, Matter 6 (6) (2023) 2005-2018. [25] E. Hamzehpoor, D.F. Perepichka, Crystal engineering of room temperature phosphorescence in organic solids, Angew. Chem. Int. Ed. 59 (25) (2020) 9977-9981. [26] P. Jiang, B.B. Ding, T. Li, C. Wang, Z.Y. Wang, W.B. Liu, X. Ma, Fine regulation of charge recombination for multi-color persistent luminescence, Sci. China Chem. (2025). [27] J.Y. Li, S.B. Hao, M.K. Li, Y.Q. Chen, H.L. Li, S.Q. Wu, S.R. Yang, L. Dang, S.J. Su, M.D. Li, Triplet energy gap-regulated room temperature phosphorescence in host-guest doped systems, Angew. Chem. Int. Ed. 64 (5) (2025) e202417426. [28] Z.S. Gao, X. Yan, Q. Jia, J.R. Zhang, G.Y. Guo, H.H. Li, H. Li, G.Z. Xie, Y. Tao, R.F. Chen, Stimulating chiral selective expression of room temperature phosphorescence for chirality recognition, Adv. Sci. 11 (44) (2024) e2410671. [29] Z.X. Zhou, X. Wang, A.Q. Lv, M.J. Ding, Z.C. Song, H.L. Ma, Z.F. An, W. Huang, Achieving efficient X-ray scintillation of purely organic phosphorescent materials by chromophore confinement, Adv. Mater. 36 (47) (2024) e2407916. [30] M. Yao, W. Wei, W.G. Qiao, Y. Zhang, X.P. Zhou, Z.A. Li, H.Y. Peng, X.L. Xie, High-security plastic with integrated holographic and phosphorescent images, Adv. Mater. 37 (12) (2025) e2414894. [31] S.M. Tang, S.N. Jiang, K.T. Wang, Y.S. Zhang, L.J. Yi, J.H. Hou, L.J. Qu, Y.L. Zhao, C.L. Yang, Cycloolefin copolymers with a multiply rigid structure for protecting triplet exciton from thermo- and moisture-quenching, Adv. Mater. 37 (10) (2025) e2416397. [32] H.Y. Yang, Y.F. Wang, X.K. Yao, H.L. Ma, J.M. Yu, X. Li, X. Wang, X.Y. Liang, Q.M. Peng, S.Z. Cai, Z.F. An, W. Huang, Efficient and ultralong room temperature phosphorescence from isolated molecules under visible light excitation, J. Am. Chem. Soc. 147 (2) (2025) 1474-1481. [33] J. Yuan, S. Wang, Y. Ji, R.F. Chen, Q. Zhu, Y.R. Wang, C. Zheng, Y. Tao, Q.L. Fan, W. Huang, Invoking ultralong room temperature phosphorescence of purely organic compounds through H-aggregation engineering, Mater. Horiz. 6 (6) (2019) 1259-1264. [34] S. Li, L.Y. Fu, X.X. Xiao, H. Geng, Q. Liao, Y. Liao, H.B. Fu, Regulation of thermally activated delayed fluorescence to room-temperature phosphorescent emission channels by controlling the excited-states dynamics via J- and H-aggregation, Angew. Chem. Int. Ed. 60 (33) (2021) 18059-18064. [35] L.J. Tu, Y.Y. Fan, C.J. Bi, L.Y. Xiao, Y.G. Li, A.S. Li, W.L. Che, Y.J. Xie, Y.F. Zhang, S.P. Xu, W.Q. Xu, Q.Q. Li, Z. Li, How temperature and hydrostatic pressure impact organic room temperature phosphorescence from H-aggregation of planar triarylboranes and the application in bioimaging, Sci. China Chem. 66 (3) (2023) 816-825. [36] W.X. Feng, D. Chen, Y. Zhao, B. Mu, H.X. Yan, M. Barboiu, Modulation of deep-red to near-infrared room-temperature charge-transfer phosphorescence of crystalline “pyrene box” cages by coupled ion/guest structural self-assembly, J. Am. Chem. Soc. 146 (4) (2024) 2484-2493. [37] C.J. Yin, Z.A. Yan, R.J. Yan, C. Xu, B.B. Ding, Y.H. Ji, X. Ma, A 3D phosphorescent supramolecular organic framework in aqueous solution, Adv. Funct. Mater. 34 (25) (2024) 2316008. [38] M.J. Gan, Y.Q. Niu, X.J. Qu, C.H. Zhou, Lignin to value-added chemicals and advanced materials: Extraction, degradation, and functionalization, Green Chem. 24 (20) (2022) 7705-7750. [39] S.O. Alaswad, A.S. Mahmoud, P. Arunachalam, Recent advances in biodegradable polymers and their biological applications: A brief review, Polymers 14 (22) (2022) 4924. [40] M.N. Cao, F. Liu, X.Z. Huo, S.X. Liu, J. Li, S.J. Li, T.D. James, Z.J. Chen, Producing naturally degradable room-temperature phosphorescent materials by covalently attaching lignin to natural polymers, Cell Rep. Phys. Sci. 5 (2) (2024) 101811. [41] M.A. Elsawy, K.H. Kim, J.W. Park, A. Deep, Hydrolytic degradation of polylactic acid (PLA) and its composites, Renew. Sustain. Energy Rev. 79 (2017) 1346-1352. [42] H. Thomas, T. Achenbach, I.M. Hodgkinson, Y. Spoerer, I. Kuehnert, C. Dornack, K.S. Schellhammer, S. Reineke, Room temperature phosphorescence from natural, organic emitters and their application in industrially compostable programmable luminescent tags, Adv. Mater. 36 (26) (2024) e2310674. [43] Y.Y. Gong, Y.Q. Tan, J. Mei, Y.R. Zhang, W.Z. Yuan, Y.M. Zhang, J.Z. Sun, B.Z. Tang, Room temperature phosphorescence from natural products: Crystallization matters, Sci. China Chem. 56 (9) (2013) 1178-1182. [44] X. Wang, X. Meng, T.T. Cui, Q. Hu, B.W. Jin, Y.S. He, X.J. Zhu, C.H. Ye, Highly transparent cellulose-based phosphorescent materials with tunable afterglow colors and white emission, Carbohydr. Polym. 341 (2024) 122309. [45] Z.Q. Lu, Q. Gao, M.C. Shi, Z.H. Su, G.G. Chen, H.S. Qi, B.Z. Lu, F. Peng, Colorful room-temperature phosphorescence including white afterglow from mechanical robust transparent wood for time delay lighting, Small Struct. 5 (7) (2024) 2300567. [46] Z.H. Xia, J.X. You, H.J. An, Y.R. Wang, J.M. Zhang, C.C. Yin, Y.H. Cheng, K.F. Jin, J. Zhang, Eco-friendly fractionation of natural straws: Sustainable ultralong room-temperature phosphorescence and super anti-ultraviolet materials, Sci. China Chem. 67 (7) (2024) 2373-2381. [47] Y.X. Zhai, J.Y. Zhou, B. Dang, X.P. Cui, S.X. Liu, X.T. Shi, R. Bi, J. Li, S.J. Li, O.J. Rojas, Z.J. Chen, Room-temperature phosphorescence from bamboo fibers and designed materials, ACS Mater. Lett. 7 (3) (2025) 1119-1126. [48] H.D. Guo, H.J. Cheng, R.X. Liu, X.X. Chen, L.Y. Wang, C.H. Yang, S.J. Li, S.X. Liu, J. Li, Q.J. Pan, T.D. James, Z.J. Chen, Red room temperature phosphorescence from lignin, Angew. Chem. Int. Ed. 64 (10) (2025) e202421112. [49] Y.Y. Qian, Y.X. Zhai, M. Li, Y.P. Qin, L. Lv, T.D. James, L.D. Wang, Z.J. Chen, Bio-based thermoplastic room temperature phosphorescent materials with closed-loop recyclability, Adv. Sci. 12 (17) (2025) e2414439. [50] K. Jin, X. Ji, J. Zhang, Q. Mi, J. Wu, J. Zhang, Colourful organic afterglow materials with super-wide color gamut and scaled processability from cellulose, Mater. Today Chem. 26 (2022) 101179. [51] Y.F. Cao, K.M. Zhang, H.Y. Wang, S.Y. Jiang, F.X. Lin, D.M. Guo, Y.C. Li, H.H. Huang, Z.Y. Yang, Z.G. Chi, Deep-red ultralong room temperature phosphorescence of chitosan-based nanofibrous membrane activated by carboxylic acids, Chem. Eng. J. 476 (2023) 146781. [52] Z.Y. Yuan, L. Zou, D.D. Chang, X. Ma, Conformation-dependent phosphorescence of galactose-decorated phosphors and assembling-induced phosphorescence enhancement, ACS Appl. Mater. Interfaces 12 (46) (2020) 52059-52069. [53] C.C. Bo, B.W. Wang, Q.L. Jia, Z.Y. Shen, W.S. Xu, J.Y. Liu, L.G. Chen, Y. Li, Y. Gou, X.L. Yan, Significant room-temperature phosphorescence enhancement induced by matrix complexes, Chem. Eng. J. 482 (2024) 148967. [54] K.L. Wan, Y.X. Zhai, S.X. Liu, J. Li, S.J. Li, B. Strehmel, Z.J. Chen, T.D. James, Sustainable afterglow room-temperature phosphorescence emission materials generated using natural phenolics, Angew. Chem. Int. Ed. 61 (31) (2022) e202202760. [55] M.L. Chen, C. Liu, H. Sun, F.L. Yang, D.F. Hou, Y.W. Zheng, R. Shi, X.H. He, X. Lin, Application of multicolor fluorescent carbon dots based on tea polyphenols in a white light-emitting diode and room-temperature phosphorescence, ACS Appl. Mater. Interfaces 16 (7) (2024) 9182-9189. [56] H.M. Zhang, L.L. Sun, X.J. Guo, J.Y. Xu, X.H. Zhao, Y.Z. Xia, Multicolor fluorescent/room temperature phosphorescent carbon dot composites for information encryption and anti-counterfeiting, Appl. Surf. Sci. 613 (2023) 155945. [57] Z. Wang, A. Li, Z. Zhao, T. Zhu, Q. Zhang, Y. Zhang, Y. Tan, W.Z. Yuan, Accessing excitation- and time-responsive afterglows from aqueous processable amorphous polymer films through doping and energy transfer, Adv. Mater. 34 (31) (2022) e2202182. [58] X. Dou, T. Zhu, Z. Wang, W. Sun, Y. Lai, K. Sui, Y. Tan, Y. Zhang, W.Z. Yuan, Color-tunable, excitation-dependent, and time-dependent afterglows from pure organic amorphous polymers, Adv. Mater. 32 (47) (2020) e2004768. [59] D. Li, Z. Liu, M. Fang, J. Yang, B.Z. Tang, Z. Li, Ultralong room-temperature phosphorescence with second-level lifetime in water based on cyclodextrin supramolecular assembly, ACS Nano 17 (13) (2023) 12895-12902. [60] D. Schilter, Fluorescence: Isolated rings do big things, Nat. Rev. Chem. 1 (12) (2017) 97. [61] T.J. Yang, Y.X. Li, Z.H. Zhao, W.Z. Yuan, Clustering-triggered phosphorescence of nonconventional luminophores, Sci. China Chem. 66 (2) (2023) 367-387. [62] Q. Gao, J. Rao, Z.W. Lv, M.C. Shi, M.X. Chen, G.G. Chen, X. Hao, B.Z. Lu, F. Peng, Stereospecific redox-mediated clusterization reconstruction for constructing long-lived, color-tunable, and processable phosphorescence cellulose, Chem. Eng. J. 451 (2023) 138923. [63] X. Zhang, Y.H. Cheng, J.X. You, J.M. Zhang, C.C. Yin, J. Zhang, Ultralong phosphorescence cellulose with excellent anti-bacterial, water-resistant and ease-to-process performance, Nat. Commun. 13 (1) (2022) 1117. [64] W.Z. Yuan, Y.M. Zhang, Nonconventional macromolecular luminogens with aggregation-induced emission characteristics, J. Polym. Sci. Part A Polym. Chem. 55 (4) (2017) 560-574. [65] Y.L. Gao, Q.N. Zhang, F.F. Wang, P.C. Sun, Wide-range tunable phosphorescence emission in cellulose-based materials enabled by complementary-color phosphors, Chem. Eng. J. 471 (2023) 144665. [66] Q. Gao, M.C. Shi, M.X. Chen, X. Hao, G.G. Chen, J. Bian, B.Z. Lu, J.L. Ren, F. Peng, Facile preparation of full-color tunable room temperature phosphorescence cellulose via click chemistry, Small 20 (13) (2024) e2309131. [67] B.Z. Lu, Q. Gao, P.Y. Li, J. Rao, Z.W. Lv, M.C. Shi, Y.J. Hu, X. Hao, G.G. Chen, M.Z. Yin, F. Peng, Natural ultralong hemicelluloses phosphorescence, Cell Rep. Phys. Sci. 3 (9) (2022) 101015. [68] X. Dou, Q. Zhou, X. Chen, Y. Tan, X. He, P. Lu, K. Sui, B.Z. Tang, Y. Zhang, W.Z. Yuan, Clustering-triggered emission and persistent room temperature phosphorescence of sodium alginate, Biomacromolecules 19 (6) (2018) 2014-2022. [69] H. Wang, Y. Qian, Q.Y. Li, Y.C. Liu, H.J. Qin, Z.C. Zhu, W. Li, F.S. Zhang, G.Y. Qing, Top-down approach for easy processing, cost-effective, biodegradable chiral photonic materials with spontaneous circularly polarized room-temperature phosphorescence activity, Chem. Eng. J. 507 (2025) 160357. [70] X.H. Chen, W.J. Luo, H.L. Ma, Q. Peng, W.Z. Yuan, Y.M. Zhang, Prevalent intrinsic emission from nonaromatic amino acids and poly(amino acids), Sci. China Chem. 61 (3) (2018) 351-359. [71] L.L. Du, G. He, Y.Y. Gong, W.Z. Yuan, S. Wang, C.B. Yu, Y.L. Liu, C. Wei, Efficient persistent room temperature phosphorescence achieved through Zn2+ doped sodium carboxymethyl cellulose composites, Compos. Commun. 8 (2018) 106-110. [72] L.L. Du, B.L. Jiang, X.H. Chen, Y.Z. Wang, L.M. Zou, Y.L. Liu, Y.Y. Gong, C. Wei, W.Z. Yuan, Clustering-triggered emission of cellulose and its derivatives, Chin. J. Polym. Sci. 37 (4) (2019) 409-415. [73] Z.C. Zhu, L.F. Zeng, W. Li, D. Tian, W.L. Xu, Enhancing persistent luminescence of cellulose by dehydration for label-free time-resolved imaging, ACS Sustain. Chem. Eng. 9 (51) (2021) 17420-17426. [74] J.X. You, X. Zhang, Q.Y. Nan, K.F. Jin, J.M. Zhang, Y.R. Wang, C.C. Yin, Z.Y. Yang, J. Zhang, Aggregation-regulated room-temperature phosphorescence materials with multi-mode emission, adjustable excitation-dependence and visible-light excitation, Nat. Commun. 14 (1) (2023) 4163. [75] Q. Gao, M.C. Shi, Z.Q. Lu, Q. Zhao, G.G. Chen, J. Bian, H.S. Qi, J.L. Ren, B.Z. Lu, F. Peng, Large-scale preparation for multicolor stimulus-responsive room-temperature phosphorescence paper via cellulose heterogeneous reaction, Adv. Mater. 35 (47) (2023) e2305126. [76] Q. Gao, M.C. Shi, J. Rao, Z.H. Su, G.G. Chen, B.Z. Lu, J. Bian, F. Peng, Fully exploiting clusterization-triggered room temperature phosphorescence of cellulose by stepwise rigidification for long-lived and excitation wavelength-dependent afterglows, Adv. Funct. Mater. 34 (40) (2024) 2403977. [77] R.X. Liu, H.D. Guo, M.N. Cao, B. Dang, Y.X. Zhai, S.X. Liu, S.J. Li, J. Li, T.D. James, Z.J. Chen, Producing a room temperature phosphorescent film from natural wood using a top-down approach, Adv. Funct. Mater. 34 (12) (2024) 2312254. [78] X.F. Luo, B. Tian, Y.X. Zhai, H.D. Guo, S.X. Liu, J. Li, S.J. Li, T.D. James, Z.J. Chen, Room-temperature phosphorescent materials derived from natural resources, Nat. Rev. Chem. 7 (11) (2023) 800-812. [79] Y.Y. Xue, X.Q. Qiu, Y. Wu, Y. Qian, M.S. Zhou, Y.H. Deng, Y. Li, Aggregation-induced emission: The origin of lignin fluorescence, Polym. Chem. 7 (21) (2016) 3502-3508. [80] R.H. Liu, T. Jiang, D.Z. Liu, X. Ma, A facile and green strategy to obtain organic room-temperature phosphorescence from natural lignin, Sci. China Chem. 65 (6) (2022) 1100-1104. [81] J.W. Yuan, Y.X. Zhai, K.L. Wan, S.X. Liu, J. Li, S.J. Li, Z.J. Chen, T.D. James, Sustainable afterglow materials from lignin inspired by wood phosphorescence, Cell Rep. Phys. Sci. 2 (9) (2021) 100542. [82] J.Y. Zhou, B. Tian, Y.X. Zhai, M. Wang, S.X. Liu, J. Li, S.J. Li, T.D. James, Z.J. Chen, Photoactivated room temperature phosphorescence from lignin, Nat. Commun. 15 (1) (2024) 7198. [83] X.F. Ma, Y. Xiong, Y.S. Liu, J.Q. Han, G.G. Duan, Y.M. Chen, S.J. He, C.T. Mei, S.H. Jiang, K. Zhang, When MOFs meet wood: From opportunities toward applications, Chem 8 (9) (2022) 2342-2361. [84] K.L. Wan, B. Tian, Y.X. Zhai, Y.X. Liu, H. Wang, S.X. Liu, S.J. Li, W.P. Ye, Z.F. An, C.Z. Li, J. Li, T.D. James, Z.J. Chen, Structural materials with afterglow room temperature phosphorescence activated by lignin oxidation, Nat. Commun. 13 (1) (2022) 5508. [85] Y.X. Zhai, J.Y. Zhou, H.L. Bai, B. Tian, M.J. Xu, S.J. Li, S.X. Liu, T.D. James, Z.F. An, J. Li, Z.J. Chen, Producing sustainable flame-retardant room temperature phosphorescent materials from natural wood assisted by borax, Next Mater. 6 (2025) 100278. [86] W.M. Yin, B. Dang, Y.Y. Miao, S.J. Li, J. Li, S.X. Liu, T.D. James, Z.J. Chen, Producing sustainable room temperature phosphorescent materials using natural wood and sucrose, Cell Rep. Phys. Sci. 5 (2) (2024) 101792. [87] L.S. Zhang, F. Gu, P. Jiang, X. Ma, Visualization of solvent effect and oxygen content via a red room-temperature phosphorescent material, ACS Appl. Mater. Interfaces 16 (32) (2024) 42794-42801. [88] L. Zhou, J.M. Song, Z.Y. He, Y.W. Liu, P. Jiang, T. Li, X. Ma, Achieving efficient dark blue room-temperature phosphorescence with ultra-wide range tunable-lifetime, Angew. Chem. Int. Ed. 63 (22) (2024) e202403773. [89] D.F. Li, F.F. Lu, J. Wang, W.D. Hu, X.M. Cao, X. Ma, H. Tian, Amorphous metal-free room-temperature phosphorescent small molecules with multicolor photoluminescence via a host-guest and dual-emission strategy, J. Am. Chem. Soc. 140 (5) (2018) 1916-1923. [90] Q. Zhou, M. Liu, C.C. Li, S.J. Lu, B. Lei, J.T. Jiang, Y. Yin, Y.C. Zhang, Y.F. Shen, Tunable photoluminescence properties of cotton fiber with gradually changing crystallinity, Front. Chem. 10 (2022) 805252. [91] B.B. Ding, X. Ma, H. Tian, Recent advances of pure organic room temperature phosphorescence based on functional polymers, Acc. Mater. Res. 4 (10) (2023) 827-838. [92] X. Ma, J. Wang, H. Tian, Assembling-induced emission: An efficient approach for amorphous metal-free organic emitting materials with room-temperature phosphorescence, Acc. Chem. Res. 52 (3) (2019) 738-748. [93] E. Pashkina, A. Aktanova, O. Boeva, M. Bykova, E. Gavrilova, E. Goiman, E. Kovalenko, N. Saleh, L. Grishina, V. Kozlov, Evaluation of the immunosafety of cucurbit[n]uril in vivo, Pharmaceutics 16 (1) (2024) 127. [94] K.M. Zhang, D.M. Guo, T.Y. Tang, X.K. Fang, F.X. Lin, X. Long, F.F. Ke, X.Y. Ji, N.P. Chen, Z. Zhang, H.H. Huang, Z.G. Chi, Z.Y. Yang, Polylactic acid (PLA)-based persistent room-temperature phosphorescence polymer nanoparticles for bioimaging, ACS Appl. Mater. Interfaces 17 (10) (2025) 15177-15186. [95] X. Wang, Q. Miao, W.J. Zhang, Y. Zhou, R. Xiong, Y.Y. Duan, X. Meng, C.H. Ye, Switchable circular polarized phosphorescence enabled by cholesteric assembled nanocelluloses, Chem. Eng. J. 481 (2024) 148463. [96] X.L. Nie, J.Y. Gong, Z.Y. Ding, B. Wu, W.J. Wang, F. Gao, G.Q. Zhang, P. Alam, Y. Xiong, Z. Zhao, Z.J. Qiu, B.Z. Tang, Room temperature phosphorescent nanofiber membranes by bio-fermentation, Adv. Sci. 11 (33) (2024) 2405327. [97] M. Liu, F. Jin, W. Chen, Q.F. Wu, H.Y. Xu, Q. Zhou, L. Yang, Adjustable multicolor doped cellulose nanocrystal film with excitation and temperature dependence for all-weather anticounterfeiting in sunlight and darkness, ACS Sustain. Chem. Eng. 12 (2024) 9897-9907. [98] C.G. Ren, Z.S. Wang, H.L. Ou, T.J. Wang, Z.P. Zhao, Y.T. Wei, H. Yuan, Y.Q. Tan, W.Z. Yuan, Multi-responsive afterglows from aqueous processable amorphous polysaccharide films, Small Meth. 8 (2) (2024) 2300243. [99] G. Crini, Review: A history of cyclodextrins, Chem. Rev. 114 (21) (2014) 10940-10975. [100] X. Ma, J.J. Cao, Q.C. Wang, H. Tian, Photocontrolled reversible room temperature phosphorescence (RTP) encoding β-cyclodextrin pseudorotaxane, Chem. Commun. 47 (12) (2011) 3559-3561. [101] H. Chen, L. Xu, X. Ma, H. Tian, Room temperature phosphorescence of 4-bromo-1,8-naphthalic anhydride derivative-based polyacrylamide copolymer with photo-stimulated responsiveness, Polym. Chem. 7 (24) (2016) 3989-3992. [102] Z.Y. He, J.M. Song, C.L. Li, Z.Z. Huang, W.B. Liu, X. Ma, High-performance organic ultralong room temperature phosphorescence based on biomass macrocycle, Adv. Mater. 37 (11) (2025) e2418506. [103] M.Z. Zeng, T. Li, Y.C. Liu, X.L. Lin, X.H. Zu, Y.X. Mu, L.H. Chen, Y.P. Huo, Y.L. Qin, Cellulose-based photo-enhanced persistent room-temperature phosphorescent materials by space stacking effects, Chem. Eng. J. 446 (2022) 136935. [104] T. Zhang, J.P. Zhou, H.M. Li, J.L. Ma, X. Wang, H.Q. Shi, M.H. Niu, Y.S. Liu, F.S. Zhang, Y.Z. Guo, Stable lignin-based afterglow materials with ultralong phosphorescence lifetimes in solid-state and aqueous solution, Green Chem. 25 (4) (2023) 1406-1416. [105] J.X. You, C.C. Yin, S.H. Wang, X. Wang, K.F. Jin, Y.R. Wang, J.F. Wang, L. Liu, J. Zhang, J.M. Zhang, Responsive circularly polarized ultralong room temperature phosphorescence materials with easy-to-scale and chiral-sensing performance, Nat. Commun. 15 (1) (2024) 7149. [106] M.N. Cao, Y.R. Ren, Y. Wu, J.J. Shen, S.J. Li, Z.Q. Yu, S.X. Liu, J. Li, O.J. Rojas, Z.J. Chen, Biobased and biodegradable films exhibiting circularly polarized room temperature phosphorescence, Nat. Commun. 15 (1) (2024) 2375. [107] X. Zhang, Y.H. Cheng, J.X. You, J.M. Zhang, Y.R. Wang, J. Zhang, Irreversible humidity-responsive phosphorescence materials from cellulose for advanced anti-counterfeiting and environmental monitoring, ACS Appl. Mater. Interfaces 14 (14) (2022) 16582-16591. |
| [1] | Qingchun Yang, Dongwen Rong, Qiwen Guo, Runjie Bao, Dawei Zhang. Ensemble learning-driven multi-objective optimization of the co-pyrolysis process of biomass and coal for high economic and environmental performance[J]. 中国化学工程学报, 2025, 84(8): 23-34. |
| [2] | Gaohan Li, Lirui Mao, Ling Zhang, Qiaoli Wu, Hanxu Li. Synergetic mechanism between corn stalk biochar and coal pulping in coal-water slurry[J]. 中国化学工程学报, 2025, 83(7): 1-14. |
| [3] | Qing Zhao, Hairong Yuan, Heran Wang, Xiujin Li. Enhancing biomethane production from corn stover via anaerobic digestion incorporated with microbial electrolysis cell[J]. 中国化学工程学报, 2025, 83(7): 98-110. |
| [4] | Hongyang Liu, Li Zhang, Jiali Cai, Siyu Liu, Cuijiao Zhao, Shuyu Wang, Mengyu Zhao, Menglong Liu, Wenwen Ding, Hongjian Zhou, Weiji Dai, Saifang Huang. Biomass-derived nitrogen-doped porous carbon as a sustainable flowelectrode material for enhanced capacitive deionization[J]. 中国化学工程学报, 2025, 83(7): 244-253. |
| [5] | Meiting Guo, Youting Wang, Ziliang Xie, Kok bing Tan, Fangsong Guo, Kang Sun, Jianchun Jiang, Guowu Zhan. Preparation and extrusion of ZSM-5 based on biomass templates for enhanced mechanical properties and catalytic pyrolysis performance[J]. 中国化学工程学报, 2025, 80(4): 47-60. |
| [6] | Jing Wang, Xinwei Yang, Ruiping Zhang, Fengling Yang, Frédéric Marias, Fei Wang. NO reduction performance of pyrolyzed biomass char: Effects of dechlorination removal pretreatments[J]. 中国化学工程学报, 2025, 80(4): 119-129. |
| [7] | Wei Zhang, Yuming Zhang, Haixin Wu, Xinyu Yang, Pei Qiao, Jiazhou Li, Zhewen Chen, Yan Wang. Investigation on the pyrolysis behaviors and kinetics of walnut shell lignocellulosic biomass with additives[J]. 中国化学工程学报, 2025, 80(4): 303-314. |
| [8] | Chen Liang, Weiqiang Chen, Linghong Yin, Xianli Wu, Jie Xu, Chunhua Du, Wangda Qu. Properties evolutions during carbonization of carbon foam using lignin as sole precursor[J]. 中国化学工程学报, 2025, 78(2): 33-43. |
| [9] | Zhiying Feng, Kaifeng Liu, Tao Zhu, Dongfang Li, Xing Zhu. CO2-gasification of corncob in a molten salt environment[J]. 中国化学工程学报, 2025, 78(2): 58-66. |
| [10] | Jinhang Dai, Qingya Cao, Delong Yang, Gang Chen, Ziting Du, Song Wang, Fukun Li. 3-Acetamido-5-acetylfuran: An emerging renewable nitrogen-containing platform compound[J]. 中国化学工程学报, 2025, 78(2): 263-272. |
| [11] | Di Wu, Ping Hu, Hui Li, Zhidan Xue, Hang Lv, Yimeng Guo, Changwei Hu, Liangfang Zhu. Influences of fractional separation on the structure and reactivity of wheat straw cellulose for producing 5-hydroxymethylfurfural[J]. 中国化学工程学报, 2024, 73(9): 154-162. |
| [12] | Pengxing Yuan, Xiude Hu, Jingjing Ma, Tuo Guo, Qingjie Guo. Thermogravimetric characteristics of corn straw and bituminous coal copyrolysis based the ilmenite oxygen carriers[J]. 中国化学工程学报, 2024, 68(4): 8-15. |
| [13] | Peng Jiang, Hao Zhang, Guanhan Zhao, Lin Li, Tuo Ji, Liwen Mu, Xiaohua Lu, Jiahua Zhu. A thermodynamic view on the in-situ carbon dioxide reduction by biomass-derived hydrogen during calcium carbonate decomposition[J]. 中国化学工程学报, 2024, 68(4): 231-240. |
| [14] | Yifang Mi, Wenqiang Wang, Sen Zhang, Yalong Guo, Yufeng Zhao, Guojin Sun, Zhihai Cao. Ultra-high specific surface area activated carbon from Taihu cyanobacteria via KOH activation for enhanced methylene blue adsorption[J]. 中国化学工程学报, 2024, 67(3): 106-116. |
| [15] | Yong-Yi Zeng, Xin-Yi Xu, Jin-Xuan Xie, Wen-Li Chen, Lan Liu, Xin-Jian Yin, Bi-Shuang Chen. Lipase and photodecarboxylase coexpression: A potential strategy for alkane-based biodiesel production from natural triglycerides[J]. 中国化学工程学报, 2024, 67(3): 238-246. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001993号 
