[1] W. Ye, W. Chaiyapa, Y.T. Li, A comparative study of energy governance on energy resilience: process tracing of China and Thailand’s solar power development, Energy Strategy Rev. 55 (2024) 101500. [2] B. Wang, K.Y. Dong, W.L. Zhong, C. Zhao, Can high-quality energy development and energy security achieve a win-win situation? The case of China, Econ. Anal. Policy 83 (2024) 17-28. [3] B.H. Jiang, M.Y. Raza, Research on China’s renewable energy policies under the dual carbon goals: a political discourse analysis, Energy Strategy Rev. 48 (2023) 101118. [4] N. Sohrabi, K.A. Hammoodi, A. Hammoud, D.J. Jasim, S.H. Hashemi Karouei, J. Kheyri, H. Nabi, Using different geometries on the amount of heat transfer in a shell and tube heat exchanger using the finite volume method, Case Stud. Therm. Eng. 55 (2024) 104037. [5] M. Alhuyi Nazari, M.H. Ahmadi, A. Mukhtar, V. Blazek, L. Prokop, S. Misak, Intelligent techniques for prediction characteristics of shell and tube heat exchangers: a comprehensive review, Int. Commun. Heat Mass Transf. 158 (2024) 107864. [6] S. Saha, N. Hasan, Numerical evaluation of thermohydraulic parameters for diverse configurations of shell-and-tube heat exchanger, Results Eng. 23 (2024) 102509. [7] C.L. Chang, W.F. Shen, Global optimization of the design of intensified shell and tube heat exchanger using tube inserts, Can. J. Chem. Eng. 102 (1) (2024) 350-365. [8] S.P. He, M.J. Wang, W.X. Tian, S.Z. Qiu, G.H. Su, Development of an OpenFOAM solver for numerical simulations of shell-and-tube heat exchangers based on porous media model, Appl. Therm. Eng. 210 (2022) 118389. [9] R.W. Serth, T.G. Lestina, Process Heat Transfer: Principles, Applications and Rules of Thumb, Elsevier/Academic Press, Amsterdam and Boston, 2014. [10] K.J. Bell, Heat exchanger design for the process industries, Journal of heat transfer: Transactions of the ASME,126(6)(2004)877-885. [11] E. Cao, Heat Transfer in Process Engineering, McGraw-Hill, New York,USA, 2010. [12] S.S. Han, X.T. Li, Z.M. Liu, B.J. Zhang, C. He, Q.L. Chen, Thermal-economic optimization design of shell and tube heat exchanger using an improved sparrow search algorithm, Therm. Sci. Eng. Prog. 45 (2023) 102085. [13] G.H. Wang, D.B. Wang, J. Deng, Y.M. Lyu, Y.S. Pei, S. Xiang, Experimental and numerical study on the heat transfer and flow characteristics in shell side of helically coiled tube heat exchanger based on multi-objective optimization, Int. J. Heat Mass Transf. 137 (2019) 349-364. [14] C.de O. Goncalves, A.L.H. Costa, M.J. Bagajewicz, Shell and tube heat exchanger design using mixed-integer linear programming, AlChE. J. 63 (6) (2017) 1907-1922. [15] M. Foruzan Nia, H. Farzad, A. Babak Ansari, M. Ghodrat, S. Abdolreza Gandjalikhan Nassab, M. Behnia, Performance improvement of a tubular heat exchanger by tube arrangement optimization using simulated annealing algorithm and blocked-off method, Therm. Sci. Eng. Prog. 40 (2023) 101793. [16] A. Khoshbakht, H. Hajabdollahi, M. Shafiey Dehaj, Investigating the effect of stream reflux on optimum design of heat exchanger using Particle Swarm Algorithm, J. Taiwan Inst. Chem. Eng. 144 (2023) 104745. [17] S.S. Pawar, V.K. Sunnapwar, Experimental and CFD investigation of convective heat transfer in helically coiled tube heat exchanger, Chem. Eng. Res. Des. 92 (11) (2014) 2294-2312. [18] X.T. Wang, N.B. Zheng, P. Liu, Z.C. Liu, W. Liu, Numerical investigation of shell side performance of a double shell side rod baffle heat exchanger, Int. J. Heat Mass Transf. 108 (2017) 2029-2039. [19] X.T. Wang, Y.M. Liang, Y. Sun, Z.C. Liu, W. Liu, Experimental and numerical investigation on shell-side performance of a double shell-pass rod baffle heat exchanger, Int. J. Heat Mass Transf. 132 (2019) 631-642. [20] Y.Y. Yuan, J.M. Cao, Z. Zhang, Z.Y. Xiao, X.S. Wang, Experimental and numerical simulation study of a novel double shell-passes multi-layer helically coiled tubes heat exchanger, Int. J. Heat Mass Transf. 227 (2024) 125497. [21] S.F. Song, Numerical studies on performance of double shell-pass heat exchangers with sleeve tubes and continuous helical baffles, Proc. CSEE 33 (14) ( 2013) 82-87. [22] X.H. Xu, J.H. Guo, Y.G. Lei, F. Wang, Heat transfer and flow resistance performance of a double shell-pass shell-and-tube heat exchanger, J. Eng. Therm. Energy Power 33 (12) ( 2018) 20-25. [23] S. Ji, W.J. Du, P. Wang, L. Cheng, Numerical investigation on double shell-pass shell-and-tube heat exchanger with continuous helical baffles, J. Thermodyn. 2011 (1) (2011) 839468. [24] J.F. Yang, M. Zeng, Q.W. Wang, Numerical investigation on shell-side performances of combined parallel and serial two shell-pass shell-and-tube heat exchangers with continuous helical baffles, Appl. Energy, 139 (139) 163-174. [25] D. Raut, S. Londhe, V.R. Kalamkar, Performance investigation of latent heat energy storage in series and parallel arrangement: a numerical study, J. Energy Storage 55 (2022) 105678. [26] Jalaluddin, A. Miyara, R. Tarakka, M.A. Ilahi Ramadhani, Experimental performance analysis of shallow spiral-tube ground heat exchangers in series and parallel configurations, E3S Web Conf. 130 (2019) 01017. [27] S.E. Sofyan, T.M.I. Riayatsyah, E. Hu, A. Tamlicha, T.M. Reza Pahlefi, H.B. Aditiya, Computational fluid dynamic simulation of earth air heat exchanger: a thermal performance comparison between series and parallel arrangements, Results Eng. 24 (2024) 102932. [28] J.C. Lemos, A.L.H. Costa, M.J. Bagajewicz, Set trimming procedure for the design optimization of shell and tube heat exchangers, Ind. Eng. Chem. Res. 59 (31) (2020) 14048-14054. [29] S.K. Bhatti, C.M. Krishna, C. Vundru, M.L. Neelapu, I.N. Niranjan Kumar, Estimating number of shells and determining the log mean temperature difference correction factor of shell and tube heat exchangers, Adv. Comput. Meth. Heat Transf. IX 1 (2006) 323-335. [30] J.A.W. Gut, J.M. Pinto, Optimal configuration design for plate heat exchangers, Int. J. Heat Mass Transf. 47 (22) (2004) 4833-4848. [31] A.L.H. Costa, M.J. Bagajewicz, 110th anniversary: on the departure from heuristics and simplified models toward globally optimal design of process equipment, Ind. Eng. Chem. Res. 58 (40) (2019) 18684-18702. [32] Z.K. Yang, Y.J. Ma, N. Zhang, R. Smith, Design optimization of shell and tube heat exchangers sizing with heat transfer enhancement, Comput. Chem. Eng. 137 (2020) 106821. [33] M. Pan, S. Jamaliniya, R. Smith, I. Bulatov, M. Gough, T. Higley, P. Droegemueller, New insights to implement heat transfer intensification for shell and tube heat exchangers, Energy 57 (2013) 208-221. |