[1] L.F. Zhu, X.Y. Zhu, Energy policy, market environment and the economic benefits of enterprises: evidence from China’s petrochemical enterprises, Nat. Hazards 95 (1) (2019) 113-127. [2] V. Chandra Srivastava, An evaluation of desulfurization technologies for sulfur removal from liquid fuels, RSC Adv. 2 (3) (2012) 759-783. [3] R.G. Faria, D. Silva, F. Mirante, S. Gago, L. Cunha-Silva, S.S. Balula, Advanced technologies conciliating desulfurization and denitrogenation to prepare clean fuels, Catalysts 14 (2) (2024) 137. [4] I. Shafiq, S. Shafique, P. Akhter, W.S. Yang, M. Hussain, Recent developments in alumina supported hydrodesulfurization catalysts for the production of sulfur-free refinery products: a technical review, Catal. Rev. 64 (1) (2022) 1-86. [5] F. Schmidt, New catalyst preparation technologies: observed from an industrial viewpoint, Appl. Catal. A Gen. 221 (1-2) (2001) 15-21. [6] S.A. Awad, S.A. Gheni, G.H. Abdullah, S.M.R. Ahmed, Design and evaluation of a co-Mo-supported nano alumina ultradeep hydrodesulfurization catalyst for production of environmentally friendly diesel fuel in a trickle bed reactor, ACS Omega 5 (21) (2020) 12081-12089. [7] E.L. Wang, F.H. Yang, M.Y. Song, G.L. Chen, Q.Q. Zhang, F. Wang, L.C. Bing, G.J. Wang, D.Z. Han, Recent advances in the unsupported catalysts for the hydrodesulfurization of fuel, Fuel Process. Technol. 235 (2022) 107386. [8] H.Y. Shang, C.G. Liu, Y.Q. Xu, J.S. Qiu, F. Wei, States of carbon nanotube supported Mo-based HDS catalysts, Fuel Process. Technol. 88 (2) (2007) 117-123. [9] W.W. Zhou, L. Yang, L. Liu, Z.P. Chen, A.N. Zhou, Y.T. Zhang, X.F. He, F.X. Shi, Z.G. Zhao, Synthesis of novel NiMo catalysts supported on highly ordered TiO2-Al2O3 composites and their superior catalytic performance for 4, 6-dimethyldibenzothiophene hydrodesulfurization, Appl. Catal. B Environ. 268 (2020) 118428. [10] Plantenga F L, Cerfontain R, Eijsbouts S. 89 “Nebula”: A hydroprocessing catalyst with breakthrough activity. Studies in Surface Science and Catalysis 2003;145: 407-410. [11] H.P. Zhang, H.F. Lin, Y. Zheng, Deactivation study of unsupported nano MoS2 catalyst, Carbon Resour. Convers. 3 (2020) 60-66. [12] S.Y. Chu, W.X. Zhou, C.Y. Zhang, Y. Zheng, Y. Liu, Y.J. Liu, Relationship between the structure and catalytic performance of MoS2 with different surfactant-assisted syntheses in the hydrodesulfurization reaction of 4, 6-DMDBT, RSC Adv. 10 (13) (2020) 7600-7608. [13] V. Hetier, D. Pena, A. Carvalho, L. Courtheoux, V. Flaud, E. Girard, D. Uzio, S. Brunet, P. Lacroix-Desmazes, A. Pradel, Influence of pluronic® P123 addition in the synthesis of bulk Ni promoted MoS2 catalyst. application to the selective hydrodesulfurization of sulfur model molecules representative of FCC gasoline, Catalysts 9 (10) (2019) 793. [14] J. Escobar, M.C. Barrera, J.A. Toledo, M.A. Cortes-Jacome, C. Angeles-Chavez, S. Nunez, V. Santes, E. Gomez, L. Diaz, E. Romero, J.G. Pacheco, Effect of ethyleneglycol addition on the properties of P-doped NiMo/Al2O3 HDS catalysts: Part I. Materials preparation and characterization, Appl. Catal. B Environ. 88 (3-4) (2009) 564-575. [15] J.X. Yang, D.D. Hu, W. Li, S.H. Yi, Highly efficient microreactors with simultaneous separation of catalysts and products in deep desulfurization, Chem. Eng. J. 267 (2015) 93-101. [16] D.Z. Han, Q.H. Li, E.L. Wang, W.P. Xie, G.L. Chen, Q.Q. Zhang, L.C. Bing, F. Wang, H.T. Fu, G.J. Wang, The evolution of NiMo unsupported catalysts with 3DOM structure for thiophene hydrodesulfurization, Catal. Today 405-406 (2022) 329-336. [17] F.H. Yang, M.Y. Song, Y.Q. Du, Z.Q. Wan, E.L. Wang, Q.Q. Zhang, L.C. Bing, F. Wang, G.J. Wang, H.T. Fu, D.Z. Han, Enhanced hydrodesulfurization activity of thiophene over hollow tubular CoMo unsupported catalysts, React. Kinet. Mech. Catal. 137 (4) (2024) 1899-1910. [18] Z.W. Zhang, P. Wang, F. Wang, Y.Q. Li, W. Lu, X.M. Jiang, X. Gui, Z. Yun, Controlling dispersion and morphology of MoS2 nanospheres by hydrothermal method using SiO2 as template, Chin. J. Chem. Eng. 26 (5) (2018) 1229-1234. [19] N. Prabhu, A.K. Dalai, J. Adjaye, Hydrodesulphurization and hydrodenitrogenation of light gas oil using NiMo catalyst supported on functionalized mesoporous carbon, Appl. Catal. A Gen. 401 (1-2) (2011) 1-11. [20] J.L. Liang, M.W. Fan, M.M. Wu, J.W. Hua, W.S. Cai, T.T. Huang, Y.Q. Liu, C.G. Liu, In situ synthesis of MoS2 nanoflakes within a 3D mesoporous carbon framework for hydrodesulfurization of DBT, J. Catal. 415 (2022) 153-164. [21] M.Y. Song, F.H. Yang, Y.Q. Du, Z.Q. Wan, L.C. Bing, Q.Q. Zhang, F. Wang, H.T. Fu, G.J. Wang, D.Z. Han, In-situ sulfurization synthesis of three-dimensional porous CoMoS/CMF catalysts for thiophene hydrodesulfurization, Catal. Lett. 154 (10) (2024) 5487-5494. [22] D.G. Gu, F.F. Wang, K. Yan, R.G. Ma, J.C. Wang, A thermally decomposable template route to synthesize nitrogen-doped wrinkled carbon nanosheets as highly efficient and stable electrocatalysts for the oxygen reduction reaction, ACS Sustainable Chem. Eng. 6 (2) (2018) 1951-1960. [23] C. Li, E. Lepre, M. Bi, M. Antonietti, J.W. Zhu, Y.S. Fu, N. Lopez-Salas, Oxygen-rich carbon nitrides from an eutectic template strategy stabilize Ni, Fe nanosites for electrocatalytic oxygen evolution, Adv. Sci. (Weinh) 10 (22) (2023) e2300526. [24] Z.X. Xu, X.Q. Deng, S. Zhang, Y.F. Shen, Y.Q. Shan, Z.M. Zhang, R. Luque, P.G. Duan, X. Hu, Benign-by-design N-doped carbonaceous materials obtained from the hydrothermal carbonization of sewage sludge for supercapacitor applications, Green Chem. 22 (12) (2020) 3885-3895. [25] A. Deshpande, S. Rawat, I.M. Patil, S. Rane, T. Bhaskar, S.B. Ogale, S. Hotha, Converting renewable saccharides to heteroatom doped porous carbons as supercapacitor electrodes, Carbon 214 (2023) 118368. [26] X.B. Wang, Y.J. Zhang, C.Y. Zhi, X. Wang, D.M. Tang, Y.B. Xu, Q.H. Weng, X.F. Jiang, M. Mitome, D. Golberg, Y. Bando, Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors, Nat. Commun. 4 (2013) 2905. [27] Q.C. Li, Y.W. Tong, Y.B. Zeng, X.K. Gu, M.Y. Ding, Carbohydrate-regulated synthesis of ultrathin porous nitrogen-vacancy polymeric carbon nitride for highly efficient Visible-light hydrogen evolution, Chem. Eng. J. 450 (2022) 138010. [28] Z.L. Chen, H.X. Jia, Y.C. Guo, Y. Li, Z.G. Liu, Nitrogen-doped hydrochars from shrimp waste as visible-light photocatalysts: Roles of nitrogen species, Environ. Res. 208 (2022) 112695. [29] Y.H. Li, F.M. Chang, B. Huang, Y.P. Song, H.Y. Zhao, K.J. Wang, Activated carbon preparation from pyrolysis char of sewage sludge and its adsorption performance for organic compounds in sewage, Fuel 266 (2020) 117053. [30] F. Bernsmann, B. Frisch, C. Ringwald, V. Ball, Protein adsorption on dopamine-melanin films: role of electrostatic interactions inferred from zeta-potential measurements versus chemisorption, J. Colloid Interface Sci. 344 (1) (2010) 54-60. [31] T. Ouyang, T.Y. Zhang, H.Z. Wang, F. Yang, J. Yan, K. Zhu, K. Ye, G.L. Wang, L.M. Zhou, K. Cheng, D.X. Cao, High-throughput fabrication of porous carbon by chemical foaming strategy for high performance supercapacitor, Chem. Eng. J. 352 (2018) 459-468. [32] Z. Ozcifci, M. Emirik, H.T. Akcay, T. Yumak, Production and characterization of activated carbon foams with various activation agents for electrochemical double layer capacitors (EDLCs) applications, Colloids Surf. A Physicochem. Eng. Aspects 690 (2024) 133851. [33] Z.F. Hu, Z.R. Shen, J.C. Yu, Converting carbohydrates to carbon-based photocatalysts for environmental treatment, Environ. Sci. Technol. 51 (12) (2017) 7076-7083. [34] X.Y. Zhang, T.W. Zhang, J.Q. Guo, W.Y. Zhu, M.R. Khan, H.N. Xiao, J.L. Song, Preparation of sucrose-derived activated carbon in one pot with desirable hierarchically porous structure for efficient dyes removal, Appl. Surf. Sci. Adv. 19 (2024) 100556. [35] C.Z. Zhu, S.F. Fu, B.Z. Xu, J.H. Song, Q.R. Shi, M.H. Engelhard, X.L. Li, S.P. Beckman, J.M. Sun, D. Du, Y.H. Lin, Sugar blowing-induced porous cobalt phosphide/nitrogen-doped carbon nanostructures with enhanced electrochemical oxidation performance toward water and other small molecules, Small 13 (33) (2017). DOI: 10.1002/smll.201700796. [36] M. Skorupska, P. Kamedulski, J.P. Lukaszewicz, A. Ilnicka, The improvement of energy storage performance by sucrose-derived carbon foams via incorporating nitrogen atoms, Nanomaterials (Basel) 11 (3) (2021) 760. [37] S. Liu, Y.Q. Zhang, S. Gao, T. Fei, T. Zhang, A universal sugar-blowing approach to synthesize fluorescent nitrogen-doped carbon nanodots for detection of Hg(II), Appl. Surf. Sci. 544 (2021) 148725. [38] C.Y. Ding, C.S. Shao, Z.Y. Li, Y. Ma, X.Z. Ren, S.S. Wu, C.C. Wei, L. Xia, B. Zhong, G.W. Wen, X.X. Huang, Divalent metal-ions blowing strategy achieved 3D luffa aerogels heterostructure for lightweight broadband microwave absorber, Carbon 219 (2024) 118787. [39] K.S. Liu, H.R. Jin, L.W. Huang, Y.X. Luo, Z.H. Zhu, S.M. Dai, X.Y. Zhuang, Z.D. Wang, L. Huang, J. Zhou, Puffing ultrathin oxides with nonlayered structures, Sci. Adv. 8 (20) (2022) eabn2030. [40] E. Wojaczynska, F. Steppeler, D. Iwan, M.C. Scherrmann, A. Marra, Synthesis and applications of carbohydrate-based organocatalysts, Molecules 26 (23) (2021) 7291. [41] Y.Q. Du, L.Z. Ren, W.J. Song, Z.Q. Wan, Q.Q. Zhang, L.C. Bing, F. Wang, G.J. Wang, H.T. Fu, D.Z. Han, Low-temperature glucose foaming to construct three-dimensionally porous bulk CoMo catalyst for thiophene hydrodesulfurization, Fuel 379 (2025) 132997. [42] M.G. Jin, L. Cheng, W. Zheng, Y. Ding, Y.M. Zhu, L.M. Jia, F. Huang, Raman tensor of graphite: Symmetry of G, D and D’ phonons, Sci. China Mater. 65 (1) (2022) 268-272. [43] V.B. Mohan, M. Nieuwoudt, K. Jayaraman, D. Bhattacharyya, Quantification and analysis of Raman spectra of graphene materials, Graphene Technol. 2 (3) (2017) 47-62. [44] J.B. Wu, M.L. Lin, X. Cong, H.N. Liu, P.H. Tan, Raman spectroscopy of graphene-based materials and its applications in related devices, Chem. Soc. Rev. 47 (5) (2018) 1822-1873. [45] X.H. Liu, E.H. Wang, G.L. Feng, Z.G. Wu, W. Xiang, X.D. Guo, J.T. Li, B.H. Zhong, Z. Zheng, Compared investigation of carbon-decorated Na3V2(PO4)3 with saccharides of different molecular weights as cathode of sodium ion batteries, Electrochim. Acta 286 (2018) 231-241. [46] P.S. Shuttleworth, V. Budarin, R.J. White, V.M. Gun’ko, R. Luque, J.H. Clark, Molecular-level understanding of the carbonisation of polysaccharides, Chemistry 19 (28) (2013) 9351-9357. [47] Z.L. Li, L.B. Deng, I.A. Kinloch, R.J. Young, Raman spectroscopy of carbon materials and their composites: Graphene, nanotubes and fibres, Prog. Mater. Sci. 135 (2023) 101089. [48] M.A. Kazakova, A.A. Salomatina, V.Y. Pereyma, I.P. Prosvirin, A.V. Ishchenko, O.V. Klimov, A.S. Noskov, M.O. Kazakov, Selective hydrodesulfurization of FCC naphtha over carbon coated alumina supported CoMoS catalysts, Fuel 354 (2023) 129394. [49] S.H. Joo, S.J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles, Nature 412 (6843) (2001) 169-172. [50] C.X. Zhao, Y.X. Yang, Z.X. Wu, M. Field, X.Y. Fang, N. Burke, C.A. Ken, Synthesis and facile size control of well-dispersed cobalt nanoparticles supported on ordered mesoporous carbon, J. Mater. Chem. A 2 (46) (2014) 19903-19913. [51] Z. Baig, O. Mamat, M. Mustapha, Recent progress on the dispersion and the strengthening effect of carbon nanotubes and graphene-reinforced metal nanocomposites: a review, Crit. Rev. Solid State Mater. Sci. 43 (1) (2018) 1-46. [52] G. Berhault, A. Mehta, A.C. Pavel, J.Z. Yang, L. Rendon, M.J. Yacaman, L.C. Araiza, A.D. Moller, R.R. Chianelli, The role of structural carbon in transition metal sulfides hydrotreating catalysts, J. Catal. 198 (1) (2001) 9-19. [53] F.S. Pereira, S. Lanfredi, E.R.P. Gonzalez, D.L. da Silva Agostini, H.M. Gomes, R. dos Santos Medeiros, Thermal and morphological study of chitosan metal complexes, J. Therm. Anal. Calorim. 129 (1) (2017) 291-301. [54] A. Pawlak, M. Mucha, Thermogravimetric and FTIR studies of chitosan blends, Thermochim. Acta 396 (1-2) (2003) 153-166. [55] G. Chinnasamy, K. Dekeba, V.P. Sundramurthy, B. Dereje, Physicochemical properties of tef starch: morphological, thermal, thermogravimetric, and pasting properties, Int. J. Food Prop. 25 (1) (2022) 1668-1682. [56] Y. Liu, L.T. Yang, C.P. Ma, Y.Z. Zhang, Thermal behavior of sweet potato starch by non-isothermal thermogravimetric analysis, Materials (Basel) 12 (5) (2019) 699. [57] Z.L. Wu, Y. Yu, H.W. Wu, Hydrothermal reactions of biomass-derived platform molecules: mechanistic insights into 5-hydroxymethylfurfural (5-HMF) formation during glucose and fructose decomposition, Energy Fuels 37 (3) (2023) 2115-2126. [58] C. Chatterjee, F. Pong, A. Sen, Chemical conversion pathways for carbohydrates, Green Chem. 17 (1) (2015) 40-71. [59] C.B. Rasrendra, M. Windt, Y. Wang, S. Adisasmito, I.G.B.N. Makertihartha, E.R.H. van Eck, D. Meier, H.J. Heeres, Experimental studies on the pyrolysis of humins from the acid-catalysed dehydration of C6-sugars, J. Anal. Appl. Pyrolysis 104 (2013) 299-307. [60] Q. Wang, Y.F. Wang, S.-H. Luo, P.W. Li, S.X. Yan, Y.H. Zhang, X. Liu, W.N. Mu, F. Teng, Y.L. Wang, X.F. Lei, High-performance LiFePO4 cathode material was prepared by multiple intensification process with acid-washed iron red as raw material, Int. J. Energy Res. 45 (12) (2021) 18245-18256. [61] J.S. Ramos-Figueroa, T.J. Tse, J.H. Shen, S.K. Purdy, J.K. Kim, Y.J. Kim, B.K. Han, J.Y. Hong, Y.Y. Shim, M.J.T. Reaney, Foaming with starch: exploring faba bean aquafaba as a green alternative, Foods 12 (18) (2023) 3391. [62] G.J. Wang, G.L. Chen, W.P. Xie, W.T. Wang, L.C. Bing, Q.Q. Zhang, H.T. Fu, F. Wang, D.Z. Han, Three-dimensionally ordered macroporous bulk catalysts with enhanced catalytic performance for thiophene hydrodesulfurization, Fuel Process. Technol. 199 (2020) 106268. [63] D.Z. Han, X. Li, L. Zhang, Y.H. Wang, Z.F. Yan, S.M. Liu, Hierarchically ordered meso/macroporous γ-alumina for enhanced hydrodesulfurization performance, Microporous Mesoporous Mater. 158 (2012) 1-6. [64] M.Y. Sun, P.J. Kooyman, R. Prins, A high-resolution transmission electron microscopy study of the influence of fluorine on the morphology and dispersion of WS2 in sulfided W/Al2O3 and NiW/Al2O3 catalysts, J. Catal. 206 (2) (2002) 368-375. [65] L. Vradman, M.V. Landau, M. Herskowitz, Hydrodearomatization of petroleum fuel fractions on silica supported Ni-W sulphide with increased stacking number of the WS2 phase, Fuel 82 (6) (2003) 633-639. [66] R.G. de Castro, E. Devers, M. Digne, A.F. Lamic-Humblot, G.D. Pirngruber, X. Carrier, Surface-dependent activity of model CoMoS hydrotreating catalysts, J. Catal. 403 (2021) 16-31. |