1 Kendoush, A.A., “Heat, mass, and momentum transfer to a rising ellipsoidal bubble”, Ind. Eng. Chem. Res., 46 (26), 9232-9237 (2007). 2 Malcata, F.X., “Double surface-renewal model for the prediction of mass transfer rates during bubble formation with instantaneous reaction on the liquid side”, Int. J. Heat Mass Transfer, 31 (3), 567-575 (1988). 3 Dudley, J., “Mass transfer in bubble columns:A comparison of correlations”, Water Res., 29 (4), 1129-1138 (1995). 4 Takemura, F., Yabe, A., “Rising speed and dissolution rate of a carbon dioxide bubble in slightly contaminated water”, J. Fluid Mech., 378, 319-334 (1999). 5 Maceiras, R., Santana, R., Alves, S.S., “Rise velocities and gas-liquid mass transfer of bubbles in organic solutions”, Chem. Eng. Sci., 62 (23), 6747-6753 (2007). 6 Martín, M., Montes, F.J., Galán, M.A., “Theoretical modelling of the effect of surface active species on the mass transfer rates in bubble column reactors”, Chem. Eng. J., 155 (1-2), 272-284 (2009). 7 Dhole, S.D., Chhabra, R.P., Eswaran, V., “Forced convection heat transfer from a sphere to non-Newtonian power law fluids”, AIChE J., 52 (11), 3658-3667 (2006). 8 Alvarez, E., Correa, J.M., Riverol, C., Navaza, J.M., “Model based in neural networks for the prediction of the mass transfer coefficients in bubble columns. Study in Newtonian and non-Newtonianian fluids”, Int. Commun. Heat Mass Transfer, 27 (1), 93-98 (2000). 9 Linek, V., Kordac, M., Moucha, T., “Mechanism of mass transfer from bubbles in dispersions:Part Ⅱ:Mass transfer coefficients in stirred gas-liquid reactor and bubble column”, Chem. Eng. Process., 44 (1), 121-130 (2005). 10 Martín, M., Montes, F.J., Galán, M.A., “Oxygen transfer from growing bubbles:Effect of the physical properties of the liquid”, Chemical Engineering Journal, 128 (1), 21-32 (2007). 11 Dhole, S.D., Chhabra, R.P., Eswaran, V., “Mass transfer from a spherical bubble rising in power-law fluids at intermediate Reynolds numbers”, Int. Commun. Heat Mass Transfer, 34 (8), 971-978 (2007). 12 Radl, S., Tryggvason, G., Khinast, J.G., “Flow and mass transfer of fully resolved bubbles in non-Newtonian fluids”, AIChE J., 53 (7), 1861-1878 (2007). 13 Brackbill, J.U., Kothe, D.B., Zemach, C., “A continuum method for modeling surface tension”, J. Comput. Phys., 100 (2), 335-354 (1992). 14 Rider, W.J., Kothe, D.B., “Reconstructing Volume Tracking”, J. Comput. Phys., 141 (2), 112-152 (1998). 15 Higbie, R., “The rate of absorption of a pure gas into a still liquid during short periods of exposure”, Trans. Am. Inst. Chem. Eng., 31 (2), 365-389 (1935). 16 Leonard, B.P., “A stable and accurate convective modelling procedure based on quadratic upstream interpolation”, Comput. Meth. Appl. Mech. Eng., 19 (1), 59-98 (1979). 17 Issa, R.I., “Solution of the implicitly discretised fluid flow equations by operator splitting”, J. Comput. Phys., 62 (1), 40-65 (1986). 18 Versteeg, G.F., van Swaaij, W.P.M., “Solubility and diffusivity of acid gases (CO2,N2O) in aqueous alkanolamine solutions”, J. Chem. Eng. Data, 33 (1), 29-34 (1988). 19 Ma, Y.G., Cheng H., Yu, K.T., “Measurement of concentration fields near the interface of a rising bubble by holographic interference technique”, Chin. J. Chem. Eng., 7 (4), 363-367 (1999). 20 Ma, Y.G., Feng, H.S., Xu, S.C., Yu, K.T., “The mechanism of interfacial mass transfer in gas absorption process”, Chin. J. Chem. Eng., 11 (2), 227-230 (2003). |