[1] H. Shui, Z. Cai, C. Xu, Recent advances in direct coal liquefaction, Energies 3 (2) (2010) 155-170.[2] X.Wei, E. Ogata, Z. Zong, S. Zhou, Z. Qin, J. Liu, K. Shen, H. Li, Advances in the study of hydrogen transfer to model compounds for coal liquefaction, Fuel Process. Technol. 62 (2000) 103-107.[3] Y. Kitaoka,M. Ueda, K.Murata, H. Ito, K.Mikami, Effect of catalyst and vehicle in coal liquefaction, Fuel 61 (1982) 919-924.[4] Y. Ozaki, F. Mondragon, M. Makabe, H. Itoh, K. Ouchi, Coal liquefaction by hydrogen produced from methanol: 3. Examination of reaction conditions, Fuel 64 (1985) 767-771.[5] Z. Lei, L. Gao, H. Shui, S. Ren, Z. Wang, Hydrotreating behavior of Ni-Mo/SiO2Al2O3 for the upgrading of heavy oil from coal liquefaction, Energy Sources A 34 (15) (2012) 1363-1370.[6] M. Janczarek, K. Stańczyk, J. Dubiński, Liquid fuel fromcoal. Technological difficulties and high costs, Przem. Chem. 90 (3) (2011) 370-374.[7] F. Derbyshire, Role of catalysis in coal liquefaction research and development, Energy Fuel 3 (3) (1989) 273-277.[8] S.Weller, R.L. Clark, M.G. Pelipetz,Mechanism of coal hydrogenation, Ind. Eng. Chem. 42 (2) (1950) 334-336.[9] S. Weller, M.G. Pelipetz, S. Friedman, Kinetics of coal hydrogenation. Conversion of asphalt, Ind. Eng. Chem. 43 (7) (1951) 1572-1575.[10] S. Weller, M. Pelipetz, S. Friedman, Kinetics of coal hydrogenation. Conversion of anthraxylon, Ind. Eng. Chem. 43 (7) (1951) 1575-1579.[11] L. Xian, H. Haoquan, Z. Shengwei, H. Shuxun, Kinetics of coal liquefaction during heating-up and isothermal stages, Fuel 87 (4) (2008) 508-513.[12] B.J. Liebenberg, H.G.J. Potgieter, Uncatalysed coal hydrogenation, Fuel 52 (2) (1973) 130-133.[13] R. Yoshida, Y. Maekawa, Mechanism of high-pressure hydrogenolysis of Hokkaido coals. Simulation of product distributions, Fuel 55 (4) (1976) 337-340.[14] R. Yoshida, Y. Maekawa, Mechanism of high-pressure hydrogenolysis of Hokkaido coals. Chemical structure of products, Fuel 55 (4) (1976) 341-345.[15] M.G. Pelipetz, J.R. Salmon, J. Bayer, E.L. Clark, Catalyst-pressure relationship in hydrogenolysis of coal, Ind. Eng. Chem. 45 (4) (1953) 806-809.[16] H. Shui, Z. Chen, Z.Wang, D. Zhang, Kinetics of Shenhua coal liquefaction catalyzed by SO42 -/ZrO2 solid acid, Fuel 89 (2010) 67-72.[17] J. Szczygiel, M. Stolarski, Mathematical analysis of hydrogenating depolymerization of asphaltenes from coal extracts, Fuel 67 (9) (1988) 1292-1297.[18] J. Suryga?a, E. ?liwka, J. Machnikowski, Chemical structure of asphaltenes obtained from the pyrolysis and extraction of Polish low rank coals, Fuel 69 (7) (1990) 896-897.[19] S. Badre, C.C. Goncalves, K. Norigana, G. Gustavson, O.C. Mullins, Molecular size and weight of asphaltene and asphaltene solubility fraction fromcoals, crude oils and bitumen, Fuel 85 (2006) 1-11.[20] J.R. Kershaw, Spectroscopic Analysis of Coal Liquids, Elsevier, Amsterdam-Oxford- New York-Tokyo, 1989.[21] H. Groenzin, O.L. Mullins, Molecular size and structure of asphaltenes from various sources, Energy Fuel 14 (2000) 677-684.[22] I. Schwager, W.C. Lee, T.F. Yen, Molecular weight and association of coal-derived asphaltenes, Anal. Chem. 49 (14) (1997) 2383-2385.[23] A.R. Hortal, P. Hurtado, B. Martinez-Haya, O.C. Mullins, Molecular-weight distribution of coal and petroleum asphaltenes from laser desorption/ionization experiments, Energy Fuel 21 (2007) 2863-2868.[24] H.W. Sternberg, R. Raymond, F.K. Schweighardt, Acid-base structure of coal-derived asphaltenes, Science 188 (1975) 49-51.[25] C. Chen, J.S. Gao, Y.J. Yan, Original preasphaltenes, and asphaltenes in coals, Fuel Process. Technol. 55 (1998) 143-151.[26] P.N. Ho, S.W.Weller, Effect of pore diameter and catalyst loading in hydroliquefaction of coal with CoO/MoO3/Al2O3 catalysts, Fuel Process. Technol. 4 (1981) 21-29.[27] T. Yoshimura, T. Sato, H. Shimada, A. Nishijima, Effect of Ni-Mo catalyst mesopore diameter on catalytic activities in hydrotreating of coal liquid, Fuel Sci. Technol. Int. 4 (1986) 621-642.[28] C. Song, Influence of pore structure and chemical properties of supported Mo catalysts on their performance in upgrading heavy coal liquids, Energy Fuel 6 (1992) 619-628.[29] C. Song, T. Nihonmatsu, M. Nomura, Effect of pore structure of Ni-Mo/Al2O3 catalysts in hydrocracking of coal derived and oil sand derived asphaltenes, Ind. Eng. Chem. Res. 30 (1991) 1726-1734.[30] C.N. Satterfield, C.K. Colton, W.H. Pitcher, Destricted diffusion in liquids within fine pores, AICHE J. 19 (1973) 628-635.[31] J.R. Pappenheimer, E.M. Renkin, L.M. Borrezo, Filtration, diffusion and molecular sieving through peripheral capillary membranes, Am. J. Physiol. 167 (1951) 13-46.[32] K. Rajagopalan, D. Luss, Influence of catalyst pore size on demetallation rate, Ind. Eng. Chem. Process. Des. Dev. 18 (1979) 459-465.[33] E. Ruckenstein, M.C. Tsai, Optimum pore size for the catalytic conversion of large molecules, AICHE J. 27 (4) (1981) 697-699.[34] D.D. Do, Catalytic conversion of large molecules: Effect of pore size and concentration, AICHE J. 30 (5) (1984) 849-853.[35] S.Y. Lee, J.D. Seader, M.C. Tsai, F.E. Massoth, Restrictive diffusion under catalytic hydroprocessing conditions, Ind. Eng. Chem. Res. 30 (1991) 29-38.[36] E.M. Renkin, Filtration and molecular sieving through porous cellulose membranes, J. Gen. Physiol. 38 (1954) 225-227.[37] M.C. Tsai, Y.W. Chen, Restrictive diffusion under hydrotreating reactions of heavy residue oils in trickle bed reactor, Ind. Eng. Chem. Res. 32 (1993) 1603-1609.[38] B.D. Prasher, Y.H. Ma, Liquid diffusion in microporous alumina pellets, AICHE J. 23 (1977) 303-311.[39] B.D. Prasher, G.A. Gabriel, Y.H. Ma, Restricted diffusion of liquids in microporous catalysts, AICHE J. 24 (1978) 1118-1122. |