[1] ANPA, La caratterizzazione del fluff di frantumazione dei veicoli - Quadro normativo di riferimento e metodi di analisi, On line at: http://www.apat.gov.it/site/_contentfiles/ 00023700/23774_Rapporti_02_15.pdf 2002. [2] O.Gonzalez-Fernandez, M.Hidalgo, E. Margui,M.L. Carvalho, I.Queralt, Heavymetals' content of automotive shredder residues (ASR): Evaluation of environmental risk, Environ. Pollut. 153 (2008) 476-482. [3] M. Nourreddine, Recycling of auto shredder residue, J. Hazard. Mater. 139 (2006) 481-490. [4] G. Granata, E. Moscardini, G. Furlani, F. Pagnanelli, L. Toro, Automobile shredded residue valorisation by hydrometallurgical metal recovery, J. Hazard. Mater. 185 (2011) 44-48. [5] D. Lanoir,G. Trouvè, L. Delfosse, D. Froelich, A. Kassamaly, Physical and chemical characterization of automotive shredder residues, Waste Manag. Res. 15 (1997) 267-276. [6] L. Morselli, A. Santini, F. Passarini, I. Bassura, Automotive shredder residue (ASR) characterization for a valuable management, Waste Manag. 30 (2010) 2228-2234. [7] F. Passarini, L. Ciacci, A. Santini, I. Vassura, L. Morselli, Auto shredder residue LCA: Implications of ASR composition evolution, J. Clean. Prod. 23 (2012) 28-36. [8] S. Fiore,B. Ruffino,M.C. Zanetti, Automobile shredder residues in Italy: Characterization and valorization opportunities, Waste Manag. 32 (2012) 1548-1559. [9] K. Kurose, T. Okuda,W. Nishijima, M. Okada, Heavymetals removal fromautomobile shredder residues (ASR), J. Hazard. Mater. 137 (2006) 1618-1623. [10] O.T. Forton, L. Mc Grady, M.M. Singh, E.M.R. Taylor, N.R. Moles, M.K. Harder, Characterisation of rotary kiln residues from the pyrolysis of shredder residues: Issues with lead, J. Anal. Appl. Pyrol. 79 (2007) 395-402. [11] M.K. Harder, O.T. Forton, A critical review of developments in the pyrolysis of automotive shredder residue, J. Anal. Appl. Pyrol. 79 (2007) 387-394. [12] P. Donaj, W. Blasiaka, W. Yanga, C. Forsgrenb, Conversion of microwave pyrolysed ASR's char using high temperature agents, J. Hazard. Mater. 185 (2011) 472-481. [13] P. De Filippi, F. Pochetti, C. Borgianni, M. Paolucci, Automobile shredder residue gasification, Waste Manag. Res. 21 (2003) 459-466. [14] M.H. Lopes, M. Freire, M. Galhetas, I. Gulyurtlu, I. Cabrita, Leachability of automotive shredder residues burned in a fluidized bed system, Waste Manag. 29 (2009) 1760-1765. [15] K.S. Lin, S. Chowdhury, Z.P. Wang, Catalytic gasification of automotive shredder residues with hydrogen generation, J. Power Sources 195 (2010) 6016-6023. [16] H.Y. Lee, Characteristics and heavy metal leaching of ash generated from incineration of automobile shredder residue, J. Hazard. Mater. 147 (2007) 570-575. [17] O. Gonzalez-Fernandez, S. Pessanha, I. Queralt, M.L. Carvalho, Analysis of lead content in automotive shredder residue (ASR), Waste Manag. 29 (2009) 2549-2552. [18] R. Cossu, T. Lai, Washing treatment of automotive shredder residue (ASR), Waste Manag. 33 (2013) 1770-1775. [19] T. Yoshida, H. Tateiwa, F. Tanno, M. Kahata, H. Seto, Cu recycling from low Cu containing waste, Proceedings of REWAS 99—Global Symposium on Recycling Waste Treatment and Clean Technology, 2006. [20] A. Shibayama, T. Otomo, Y. Takasaki, Y. Cao, T. Murakami, K. Watanabe, H. Inoue, Separation and recovery of valuable metals from automobile shredder residue, Int. J. Soc. Mater. Eng. Resour. 13 (2006) 54-59. [21] M. Nieminen, M. Suomalainen, T. Mäkinen, Gasification of shredder residue, VTT Research Notes 23442006. (ISBN 951.38.6800.1. On line at: http://www.vtt.fi/ publications/index.jsp). [22] G. Mancini, P. Viotti, A. Luciano, D. Fino, On the ASR and ASR thermal residues characterization of full scale treatment plant, Waste Manag. 34 (2014) 448-457. [23] V.A. Rossetti, F. Di Palma, F. Medici, Production of aggregate from non-metallic automotive shredder residues, J. Hazard. Mater. 137 (2006) 1089-1095. [24] J. Pèra, J. Ambroise, M. Chabannet, Valorization of automotive shredder residue in building materials, Cem Concr. Res. 34 (2004) 557-562. [25] L. Ciacci, L. Morselli, F. Passarini, A. Santini, I. Vassura, A comparison among different automotive shredder residue treatment processes, Int. J. Life Cycle Assess. 15 (2010) 896-906. [26] P. De Stefanis, V. Iaboni, V. Valent, Il recupero energetico dei residui da autodemolizione, Rapporto ENEA, ISBN: 978-88-8286-243-5, 2011. [27] K. Srogi, An overview of current processes for the thermochemical treatment of automotive shredder residue, Clean Technol. Environ. 10 (2008) 235-244. [28] A. Chiarioni, A.P. Reverberi, A.H. El-Shaarawi, V.G. Dovì, Modelling of an ASR countercurrent pyrolysis reactor with nonlinear kinetics, Appl. Therm. Eng. 23 (2003) 1847-1855. [29] A. Chiarioni, A.P. Reverberi, B. Fabiano, V.G. Dovì, An improved model of an ASR pyrolysis reactor for energy recovery, Energy 31 (2006) 2460-2468. [30] J.L. Hau, R. Ray, R.B. Thorpe, A. Azapagic, A thermodynamic model of the outputs of gasification of solid waste, Int. J. Chem. React. Eng. 6 (2008) 1-20. [31] J. Hyks, T. Astrup, Influence of operational conditions, waste input and ageing on contaminant leaching from waste incinerator bottom ash: A full-scale study, Chemosphere 79 (2009) 1178-1184. [32] J. Li, E. Chen, H. Su, T. Tan, Biosorption of Pb2+ with modified soybean hulls as absorbent, Chin. J. Chem. Eng. 19 (2011) 334-339. [33] A. Meng, Q. Li, J. Jia, Y. Zhang, Effect of moisture on partitioning of heavy metals in incineration of municipal solid waste, Chin. J. Chem. Eng. 20 (2012) 1008-1015. [34] M. Pelino, A. Karamanov, P. Pisciella, D. Zanneti, S. Crisucci, Vitrification of electric arc furnace dusts, Waste Manag. 22 (2002) 945-949. [35] A. Karamanov, M. Pelino, A. Hreglich, Sintered glass-ceramics from MSWincinerator fly ashes Part I: The influence of the heating rate on the sintercrystallization, J. Eur. Ceram. Soc. 23 (2003) 827-832. [36] B. Ruffino, S. Fiore,M.C. Zanetti, Strategies for the enhancement of automobile shredder residues (ASRs) recycling: Results and cost assessment, Waste Manag. 34 (2014) 148-155. [37] F. Ferella, A. Ognyanova, I. De Michelis, G. Taglieri, F. Vegliò, Extraction of metals from spent hydrotreating catalysts: Physico-mechanical pre-treatments and leaching stage, J. Hazard. Mater. 192 (2011) 176-185. [38] I. Birloaga, I. De Michelis, F. Ferella, M. Buzatu, F. Vegliò, Study on the influence of various factors in the hydrometallurgical processing of waste printed circuit boards for copper and gold recovery, Waste Manag. 33 (2013) 935-941. [39] D.C. Montgomery, Design and Analysis of Experiments, third ed. Wiley, New York, 1991. |