[1] T.A. Jackson, D.R. Eklund, A.J. Fink, High speed propulsion performance advantage of advanced materials, J. Mater. Sci. 39(19) (2004) 5905-5913. [2] A. Shah, I.R. Chughtai, M. Hameed, Numerical simulation of direct-contact condensation from a supersonic steam jet in subcooled water, Chin. J. Chem. Eng. 18(4) (2010) 577-587. [3] D. Huang, B. Ruan, X. Wu, W. Zhang, G. Xu, Z. Tao, P. Jiang, L. Ma, W. Li, Experimental study on heat transfer of aviation kerosene in a vertical upward tube at supercritical pressures, Chin. J. Chem. Eng. 23(2) (2015) 425-434. [4] Y. Chen, Z. Lei, T. Zhang, Q. Zhu, Z. Bao, Q. Zhang, X.Y. Li, Flow distribution of hydrocarbon fuel in parallel minichannels heat exchanger, AICHE J. 64(7) (2018) 2781-2791. [5] Y. Feng, J. Qin, S. Zhang, W. Bao, Y. Cao, H. Huang, Modeling and analysis of heat and mass transfers of supercritical hydrocarbon fuel with pyrolysis in mini-channel, Int. J. Heat Mass Transf. 91(5) (2015) 520-531. [6] M. Cooper, J.E. Shepherd, Experiments studying thermal cracking, catalytic cracking, and pre-mixed partial oxidation of JP-10, 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Huntsville, AL, Paper 2003-46872003, pp. 1-20. [7] F. Zhong, X. Fan, G. Yu, J. Li, C.J. Sung, Thermal cracking and heat sink capacity of aviation kerosene under supercritical conditions, J. Thermophys. Heat Transf. 25(3) (2011) 450-456. [8] T. Ward, J.S. Ervin, R.C. Striebich, S. Zabarnick, Simulations of flowing mildly-cracked normal alkanes incorporating proportional product distributions, J. Propuls. Power 20(3) (2004) 394-402. [9] Z. Tao, X. Hu, J. Zhu, H. Wu, Numerical investigation of pyrolysis effects on heat transfer characteristics and flow resistance of n-decane under supercritical pressure, Chin. J. Aeronaut. 31(6) (2018) 1249-1257. [10] Y. Zhu, B. Liu, P. Jiang, Experimental and numerical investigations on n-decane thermal cracking at supercritical pressures in a vertical tube, Energy Fuel 28(1) (2013) 466-474. [11] W. Bao, S. Zhang, J. Qin, W. Zhou, K. Xie, Numerical analysis of flowing cracked hydrocarbon fuel inside cooling channels in view of thermal management, Energy 67(4) (2014) 149-161. [12] W. Zhou, Z. Jia, J. Qin, W. Bao, B. Yu, Experimental study on effect of pressure on heat sink of n-decane, Chem. Eng. J. 243(2014) 127-136. [13] N. Zhang, T. Qiu, B. Chen, CFD simulation of propane cracking tube using detailed radical kinetic mechanism, Chin. J. Chem. Eng. 21(12) (2013) 1319-1331. [14] Y. Feng, Y. Jiang, X. Li, S. Zhang, J. Qin, Y. Cao, H. Huang, Numerical study on the influences of heat and mass transfers on the pyrolysis of hydrocarbon fuel in minichannel, Appl. Therm. Eng. 119(2017) 650-658. [15] Y. Feng, S. Zhang, K. Wu, J. Qin, Y. Cao, H. Huang, Numerical investigation of distribution of reaction rate during convective heat transfer with endothermic chemical reaction, Int. Commun. Heat Mass Transfer 83(2017) 1-7. [16] F. Li, Z. Li, K. Jing, L. Wang, X. Zhang, G. Liu, Thermal cracking of endothermic hydrocarbon fuel in regenerative cooling channels with different geometric structures, Energy Fuel 32(6) (2018) 6524-6534. [17] P. Liu, H. Zhou, X. Gao, J. Zhu, X. Li Wang, An experimental and numerical investigation on thermal cracking of n-decane in the microchannel, Pet. Sci. Technol. 34(6) (2016) 555-561. [18] T. Zhang, H. Zhou, Y. Chen, P. Liu, Q. Zhu, J. Wang, X. Li, Investigations on the thermal cracking and pyrolysis mechanism of China No.3 aviation kerosene under supercritical conditions, Pet. Sci. Technol. (2018) 1-9. [19] R.J. Moffat, Describing the uncertainties in experimental results, Exp. Thermal Fluid Sci. 1(1) (1988) 3-17. [20] R. Jiang, G. Liu, X. Zhang, Thermal cracking of hydrocarbon aviation fuels in regenerative cooling microchannels, Energy Fuel 27(5) (2013) 2563-2577. [21] H. Zhou, X.K. Gao, P.H. Liu, Q. Zhu, J.L. Wang, X.Y. Li, Energy absorption and reaction mechanism for thermal pyrolysis of n-decane under supercritical pressure, Appl. Therm. Eng. 112(2017) 403-412. [22] M.L. Huber, NIST Standard Reference Database 4-NIST Thermophysical Properties of Hydrocarbon Mixtures Database, Version 3.2, National Institute of Standards and Technology Standard Reference Data Program, Gaithersburg, MD 20899, 2007. [23] Z. Jia, H. Huang, W. Zhou, F. Qi, M. Zeng, Experimental and modeling investigation of n-decane pyrolysis at supercritical pressures, Energy Fuel 28(9) (2014) 6019-6028. [24] ANSYS 14.5 FLUENT User's Guide., ANSYS Inc., Canonsburg, PA, USA, 2013. [25] T.A. Ward, J.S. Ervin, S. Zabarnick, L. Shafer, Pressure effects on flowing mildlycracked n-decane, J. Propuls. Power 21(2) (2005) 344-355. [26] T. Edwards, Cracking and deposition behavior of supercritical hydrocarbon aviation fuels, Combust. Sci. Technol. 178(1) (2006) 307-334. [27]. I. Safarik, O.P. Strausz, The thermal decomposition of hydro-carbons. Part 1. n-Alkanes (C ≥ 5), Res. Chem. Intermed. 22(3) (1996) 275-314. |