[1] L.J. Zhang, X. Zeng, J.L. Wang, et al., Characteristics comparison of tar from lignite pyrolysis with inherent and simulated moisture for adopting a two-stage gasification process, Fuel 236(2019) 695-708. [2] D.B. Anthony, J.B. Howard, Coal devolatilization and hydrogasification, AIChE J. 22(1976) 625-656. [3] J. Hayashi, T. Kawakami, K. Kusakabe, et al., Physical and chemical modification of low-rank coals with alkyl chains and the roles of incorporated groups in pyrolysis, Energy Fuel 7(1993) 1118-1122. [4] X.G. Li, Y.L. Xue, J. Feng, et al., Co-pyrolysis of lignite and Shendong coal direct liquefaction residue, Fuel 144(2015) 342-348. [5] L. Xu, M.C. Tang, L. Duan, et al., Pyrolysis characteristics and kinetics of residue from China Shenhua industrial direct coal liquefaction plant, Thermochim. Acta 589(2014) 1-10. [6] N.A. Öztas, Y. Yürüm, Pyrolysis of Turkish Zonguldak bituminous coal. Part 1. Effect of mineral matter, Fuel 79(2000) 1221-1227. [7] X. Chu, W. Li, B. Li, et al., Sulfur transfers from pyrolysis and gasification of direct liquefaction residue of Shenhua coal, Fuel 87(2008) 211-215. [8] X. Liu, Z. Zhou, Q. Hu, et al., Experimental study on co-gasification of coal liquefaction residue and petroleum coke, Energy Fuel 25(2011) 3377-3381. [9] J. Li, J. Yang, Z. Liu, Hydro-treatment of a direct coal liquefaction residue and its components, Catal. Today 130(2008) 389-394. [10] S. Khare, M.D. Amico, An overview of conversion of residues from coal liquefaction processes, Can. J. Chem. Eng. 91(2013) 1660-1670. [11] A. Arenillas, C. Pevida, F. Rubiera, et al., Characterisation of model compounds and a synthetic coal by TG/MS/FTIR to represent the pyrolysis behaviour of coal, J. Anal. Appl. Pyrolysis 71(2004) 747-763. [12] M. Sun, X.X. Ma, B. Lv, et al., Gradient separation of ≥ 300℃ distillate from lowtemperature coal tar based on formaldehyde reactions, Fuel 160(2015) 16-23. [13] B. Tian, Y.Y. Qiao, Y.Y. Tian, Q. Liu, Investigation on the effect of particle size and heating rate on pyrolysis characteristics of a bituminous coal by TG-FTIR, J. Anal. Appl. Pyrolysis 121(2016) 376-386. [14] J. Liu, X. Jiang, J. Shen, H. Zhang, Pyrolysis of superfine pulverized coal. Part 1. Mechanisms of methane formation, Energy Convers. Manag. 87(2014) 1027-1038. [15] G. DN, W. DJ, H. S, TG-FTIR characterization of coal and biomass single fuels and blends under slow heating rate conditions:Partitioning of the fuel-bound nitrogen, Fuel Process. Technol. 91(2010) 103-115. [16] Q. Liu, S.R. Wang, Y. Zheng, et al., Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis, J. Anal. Appl. Pyrolysis 82(2008) 170-177. [17] P.R. Solomon, M.A. Serio, G.V. Despande, et al., Cross-linking reactions during coal conversion, Energy Fuel 4(1990) 42-54. [18] X. Chu, W. Li, H. Chen, Gasification property of direct coal liquefaction residue with steam, Process. Saf. Environ. Prot. 84(2006) 440-445. [19] A.G. Comolli, T.L.K. Lee, G.A. Popper, et al., The Shenhua coal direct liquefaction plant, Fuel Process. Technol. 59(1999) 207-215. [20] J.G. Wang, X.S. Lu, J.Z. Yao, et al., Experimental study of coal topping process in a downer reactor, Ind. Eng. Chem. Res. 44(2005) 463-470. [21] X.C. Lin, M. Luo, S.Y. Li, et al., The evolutionary route of coal matrix during integrated cascade pyrolysis of a typical low-rank coal, Appl. Energy 199(2017) 335-346. [22] C.Z. Li, C. Sathe, J.R. Kershaw, et al., Fates and roles of alkali and alkaline earth metals during the pyrolysis of a Victorian brown coal, Fuel 79(2000) 427-438. [23] L. Petrakis, D.W. Grandy, Electron spin resonance spectrometric study of free radicals in coals, Anal. Chem. 50(1978) 303-308. [24] B.D. Caprariis, P.D. Filippis, C. Herce, et al., Double-Gaussian distributed activation energy model for coal devolatilization, Energy Fuel 26(2012) 6153-6159. [25] X. Liu, G. Wang, G. Pan, et al., Numerical analysis of heat transfer and volatile evolution of coal particle, Fuel 106(2013) 667-673. [26] X. Liu, G. Pan, G. Wang, et al., Mathematical model of lump coal falling in the freeboard zone of the COREX melter gasifier, Energy Fuel 25(2011) 5729-5735. [27] J. Giuntoli, S. Arvelakis, H. Spliethoff, et al., Quantitative and kinetic thermogravimetric Fourier transform infrared (TG-FTIR) study of pyrolysis of agricultural residues:Influence of different pretreatments, Energy Fuel 23(2009) 5695-5706. [28] Z. Li, C. Liu, Z. Chen, et al., Analysis of coals and biomass pyrolysis using the distributed activation energy model, Bioresour. Technol. 100(2009) 948-952. [29] J. Cai, T. Li, R. Liu, A critical study of the Miura-Maki integral method for the estimation of the kinetic parameters of the distributed activation energy model, Bioresour. Technol. 102(2011) 3894-3899. [30] X.X. Jiang, Effect of iron catalyst on coal depolymerization, Coal Technol. 37(2018) 301-304(in Chinese). [31] B. Tian, Y.Y. Qiao, X.C. Lin, et al., Correlation between bond structures and volatile composition of Jining bituminous coal during fast pyrolysis, Fuel Process. Technol. 179(2018) 99-107. |