Chinese Journal of Chemical Engineering ›› 2025, Vol. 80 ›› Issue (4): 198-212.DOI: 10.1016/j.cjche.2024.11.025
Previous Articles Next Articles
Jinrong Duan1, Limin Wang1, Peng Xiao1, Bei Liu1, Zhi Li2, Guangjin Chen1
Received:
2024-09-09
Revised:
2024-10-26
Accepted:
2024-11-27
Online:
2025-03-08
Published:
2025-04-28
Contact:
Bei Liu,E-mail:liub@cup.edu.cn;Zhi Li,E-mail:liz@cupk.edu.cn
Supported by:
Jinrong Duan1, Limin Wang1, Peng Xiao1, Bei Liu1, Zhi Li2, Guangjin Chen1
通讯作者:
Bei Liu,E-mail:liub@cup.edu.cn;Zhi Li,E-mail:liz@cupk.edu.cn
基金资助:
Jinrong Duan, Limin Wang, Peng Xiao, Bei Liu, Zhi Li, Guangjin Chen. Molecular insights into the fast hydrate formation in active ice[J]. Chinese Journal of Chemical Engineering, 2025, 80(4): 198-212.
Jinrong Duan, Limin Wang, Peng Xiao, Bei Liu, Zhi Li, Guangjin Chen. Molecular insights into the fast hydrate formation in active ice[J]. 中国化学工程学报, 2025, 80(4): 198-212.
[1] E.D. Sloan Jr, C.A. Koh, C.A. Koh, Clathrate Hydrates of Natural Gases. CRC Press, (2007). [2] A. A. Khokhar, J. S. Gudmundsson, E. D. Sloan, Gas storage in structure H hydrates, Fluid Phase Equilib. 150-151 (1998) 383-392. [3] M.N. Khan, C.J. Peters, C.A. Koh, Desalination using gas hydrates: The role of crystal nucleation, growth and separation, Desalination 468 (2019) 114049. [4] Y.X. Yao, Z.Y. Yin, M.Y. Niu, X.J. Liu, J.B. Zhang, D.Y. Chen, Evaluation of 1, 3-dioxolane in promoting CO2 hydrate kinetics and its significance in hydrate-based CO2 sequestration, Chem. Eng. J. 451 (2023) 138799. [5] K. Ogata, T. Tsuda, S. Amano, S. Hashimoto, T. Sugahara, K. Ohgaki, Hydrogen storage in trimethylamine hydrate: thermodynamic stability and hydrogen storage capacity of hydrogen+trimethylamine mixed semi-clathrate hydrate, Chem. Eng. Sci. 65 (5) (2010) 1616-1620. [6] Q.B. Sun, Y.T. Kang, Review on CO2 hydrate formation/dissociation and its cold energy application, Renew. Sustain. Energy Rev. 62 (2016) 478-494. [7] M.F. Qureshi, M. Atilhan, T. Altamash, S. Aparicio, M. Aminnaji, B. Tohidi, High-pressure gas hydrate autoclave hydraulic experiments and scale-up modeling on the effect of stirring RPM effect, J. Nat. Gas Sci. Eng. 38 (2017) 50-58. [8] C.G. Xu, X.S. Li, Q.N. Lv, Z.Y. Chen, J. Cai, Hydrate-based CO2 (carbon dioxide) capture from IGCC (integrated gasification combined cycle) synthesis gas using bubble method with a set of visual equipment, Energy 44 (1) (2012) 358-366. [9] F. Rossi, M. Filipponi, B. Castellani, Investigation on a novel reactor for gas hydrate production, Appl. Energy 99 (2012) 167-172. [10] D.L. Zhong, Y.Y. Lu, D.J. Sun, W.L. Zhao, Z. Li, Performance evaluation of methane separation from coal mine gas by gas hydrate formation in a stirred reactor and in a fixed bed of silica sand, Fuel 143 (2015) 586-594. [11] J. Cai, C.G. Xu, Z.M. Xia, Z.Y. Chen, X.S. Li, Hydrate-based methane recovery from coal mine methane gas in scale-up equipment with bubbling, Energy Procedia 105 (2017) 4983-4989. [12] B. Lucia, B. Castellani, F. Rossi, F. Cotana, E. Morini, A. Nicolini, M. Filipponi, Experimental investigations on scaled-up methane hydrate production with surfactant promotion: Energy considerations, J. Petrol. Sci. Eng. 120 (2014) 187-193. [13] W.F. Hao, J.Q. Wang, S.S. Fan, W.B. Hao, Study on methane hydration process in a semi-continuous stirred tank reactor, Energy Convers. Manag. 48 (3) (2007) 954-960. [14] Y.T. Luo, J.H. Zhu, S.S. Fan, G.J. Chen, Study on the kinetics of hydrate formation in a bubble column, Chem. Eng. Sci. 62 (4) (2007) 1000-1009. [15] C.X. Cheng, F. Wang, Y.J. Tian, X.H. Wu, J.L. Zheng, J. Zhang, L.W. Li, P.L. Yang, J.F. Zhao, Review and prospects of hydrate cold storage technology, Renew. Sustain. Energy Rev. 117 (2020) 109492. [16] A. Erfani, F. Varaminian, Kinetic promotion of non-ionic surfactants on cyclopentane hydrate formation, J. Mol. Liq. 221 (2016) 963-971. [17] R. Karimi, F. Varaminian, A.A. Izadpanah, A.H. Mohammadi, Effects of two surfactants sodium dodecyl sulfate (SDS) and polyoxyethylene (20) sorbitan monopalmitate (Tween(R)40) on ethane hydrate formation kinetics: Experimental and modeling studies, J. Nat. Gas Sci. Eng. 21 (2014) 193-200. [18] M. Aliabadi, A. Rasoolzadeh, F. Esmaeilzadeh, A. Alamdari, Experimental study of using CuO nanoparticles as a methane hydrate promoter, J. Nat. Gas Sci. Eng. 27 (2015) 1518-1522. [19] S. Arjang, M. Manteghian, A. Mohammadi, Effect of synthesized silver nanoparticles in promoting methane hydrate formation at 4.7MPa and 5.7MPa, Chem. Eng. Res. Des. 91 (6) (2013) 1050-1054. [20] F. Wang, S.J. Luo, S.F. Fu, Z.Z. Jia, M. Dai, C.S. Wang, R.B. Guo, Methane hydrate formation with surfactants fixed on the surface of polystyrene nanospheres, J. Mater. Chem. A 3 (16) (2015) 8316-8323. [21] Y.S. Zhao, J.Z. Zhao, W.G. Liang, Q. Gao, D. Yang, Semi-clathrate hydrate process of methane in porous media-microporous materials of 5A-type zeolites, Fuel 220 (2018) 185-191. [22] N. Gholipour Zanjani, A. Zarringhalam Moghaddam, K. Nazari, M. Mohammad-Taheri, Enhancement of methane purification by the use of porous media in hydrate formation process, J. Petrol. Sci. Eng. 96 (2012) 102-108. [23] S.S. Park, S.B. Lee, N.J. Kim, Effect of multi-walled carbon nanotubes on methane hydrate formation, J. Ind. Eng. Chem. 16 (4) (2010) 551-555. [24] A. Adeyemo, R. Kumar, P. Linga, J. Ripmeester, P. Englezos, Capture of carbon dioxide from flue or fuel gas mixtures by clathrate crystallization in a silica gel column, Int. J. Greenh. Gas Contr. 4 (3) (2010) 478-485. [25] P. Xiao, J.J. Li, W. Chen, W.X. Pang, X.W. Peng, Y. Xie, X.H. Wang, C. Deng, C.Y. Sun, B. Liu, Y.J. Zhu, Y.L. Peng, P. Linga, G.J. Chen, Enhanced formation of methane hydrate from active ice with high gas uptake, Nat. Commun. 14 (1) (2023) 8068. [26] K. Thurmer, S. Nie, Formation of hexagonal and cubic ice during low-temperature growth, Proc. Natl. Acad. Sci. USA 110 (29) (2013) 11757-11762. [27] M. Matsumoto, T. Yagasaki, H. Tanaka, GenIce: hydrogen-disordered ice generator, J. Comput. Chem. 39 (1) (2018) 61-64. [28] M. Matsumoto, T. Yagasaki, H. Tanaka, GenIce-core: Efficient algorithm for generation of hydrogen-disordered ice structures, J. Chem. Phys. 160 (9) (2024) 094101. [29] V. Molinero, E.B. Moore, Water modeled as an intermediate element between carbon and silicon, J. Phys. Chem. B 113 (13) (2009) 4008-4016. [30] F.H. Stillinger, T.A. Weber, Computer simulation of local order in condensed phases of silicon, Phys. Rev. B Condens. Matter 31 (8) (1985) 5262-5271. [31] L.C. Jacobson, W. Hujo, V. Molinero, Amorphous precursors in the nucleation of clathrate hydrates, J. Am. Chem. Soc. 132 (33) (2010) 11806-11811. [32] L. Lupi, A. Hudait, B. Peters, M. Grunwald, R. Gotchy Mullen, A.H. Nguyen, V. Molinero, Role of stacking disorder in ice nucleation, Nature 551 (7679) (2017) 218-222. [33] X.D. Huang, L.F. Wang, K.Y. Liu, L. Liao, H.C. Sun, J.L. Wang, X.Z. Tian, Z. Xu, W.L. Wang, L. Liu, Y. Jiang, J. Chen, E.G. Wang, X.D. Bai, Tracking cubic ice at molecular resolution, Nature 617 (7959) (2023) 86-91. [34] R. Ma, F. Wang, Y.H. Chang, S.B. Xiao, N.J. English, J.Y. He, Z.L. Zhang, Unraveling adhesion strength between gas hydrate and solid surfaces, Langmuir 37 (47) (2021) 13873-13881. [35] R. Ma, H. Zhong, L.W. Li, J. Zhong, Y.G. Yan, J. Zhang, J.X. Liu, Molecular insights into the effect of a solid surface on the stability of a hydrate nucleus, J. Phys. Chem. C 124 (4) (2020) 2664-2671. [36] L. Darre, M.R. Machado, S. Pantano, Coarse-grained models of water, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2 (6) (2012) 921-930. [37] L.C. Jacobson, W. Hujo, V. Molinero, Nucleation pathways of clathrate hydrates: effect of guest size and solubility, J. Phys. Chem. B 114 (43) (2010) 13796-13807. [38] L.C. Jacobson, V. Molinero, A methane-water model for coarse-grained simulations of solutions and clathrate hydrates, J. Phys. Chem. B 114 (21) (2010) 7302-7311. [39] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1) (1995) 1-19. [40] A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier, P.J. in 't Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, R. Shan, M.J. Stevens, J. Tranchida, C. Trott, S.J. Plimpton, LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales, Comput. Phys. Commun. 271 (2022) 108171. [41] W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, J. Am. Chem. Soc. 118 (45) (1996) 11225-11236. [42] W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions, Phys. Rev. A Gen. Phys. 31 (3) (1985) 1695-1697. [43] W.G. Hoover, Constant-pressure equations of motion, Phys. Rev. A Gen. Phys. 34 (3) (1986) 2499-2500. [44] M.J. Abraham, T. Murtola, R. Schulz, S. Pall, J.C. Smith, B. Hess, E. Lindahl, GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX 1 (2015) 19-25. [45] J.F. Abascal, E. Sanz, R. Garcia Fernandez, C. Vega, A potential model for the study of ices and amorphous water: TIP4P/Ice, J. Chem. Phys. 122 (23) (2005) 234511. [46] W.L. Jorgensen, J.D. Madura, C.J. Swenson, Optimized intermolecular potential functions for liquid hydrocarbons, J. Am. Chem. Soc. 106 (22) (1984) 6638-6646. [47] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen, A smooth particle mesh Ewald method, J. Chem. Phys. 103 (1995) 8577-8593. [48] G. Bussi, D. Donadio, M. Parrinello, Canonical sampling through velocity rescaling, J. Chem. Phys. 126 (1) (2007) 014101. [49] M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: a new molecular dynamics method, J. Appl. Phys. 52 (12) (1981) 7182-7190. [50] A.H. Nguyen, V. Molinero, Identification of clathrate hydrates, hexagonal ice, cubic ice, and liquid water in simulations: the CHILL+ algorithm, J. Phys. Chem. B 119 (29) (2015) 9369-9376. [51] L.W. Cheng, J.L. Cui, J. Li, R. Zhu, B. Liu, S. Ban, G.J. Chen, High efficient development of green kinetic hydrate inhibitors via combined molecular dynamic simulation and experimental test approach, Green Chem. Eng. 3 (1) (2022) 34-43. [52] Z. Li, F. Jiang, H.B. Qin, B. Liu, C.Y. Sun, G.J. Chen, Molecular dynamics method to simulate the process of hydrate growth in the presence/absence of KHIs, Chem. Eng. Sci. 164 (2017) 307-312. [53] J.G. Parra, P. Iza, H. Dominguez, E. Schott, X. Zarate, Unveiling the hydrophilic nature of SDS surfactant through molecular simulations: Exploring the influence of charge distribution on interfacial properties in the vacuum/SDS/water system, J. Mol. Liq. 401 (2024) 124692. [54] G.J. Guo, Z.C. Zhang, Open questions on methane hydrate nucleation, Commun. Chem. 4 (1) (2021) 102. [55] G.J. Guo, M. Li, Y.G. Zhang, C.H. Wu, Why can water cages adsorb aqueous methane? A potential of mean force calculation on hydrate nucleation mechanisms, Phys. Chem. Chem. Phys. 11 (44) (2009) 10427-10437. [56] J.N. Hong, Y. Tian, T.C. Liang, X.M. Liu, Y.Z. Song, D. Guan, Z.X. Yan, J.D. Guo, B.Z. Tang, D.Y. Cao, J. Guo, J. Chen, D. Pan, L.M. Xu, E.G. Wang, Y. Jiang, Imaging surface structure and premelting of ice Ih with atomic resolution, Nature 630 (8016) (2024) 375-380. [57] A. Gupta, J. Lachance, E.D. Sloan, C.A. Koh, Measurements of methane hydrate heat of dissociation using high pressure differential scanning calorimetry, Chem. Eng. Sci. 63 (24) (2008) 5848-5853. [58] J.R. Duan, L.M. Wang, B. Liu, Z. Li, G.J. Chen, Molecular dynamics simulations on the anti-memory effect of vinyl lactam-based polymers, J. Mol. Liq. 408 (2024) 125396. [59] A.K. Soper, The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa, Chem. Phys. 258 (2-3) (2000) 121-137. [60] V.I. Korsunskii, Y.I. Naberukhin, Does the concept of the ice-like structure of water agree with its radial distribution function? J. Struct. Chem. 21 (5) (1980) 624-628. [61] P. Pirzadeh, P.G. Kusalik, Molecular insights into clathrate hydrate nucleation at an ice-solution interface, J. Am. Chem. Soc. 135 (19) (2013) 7278-7287. [62] Z.C. Zhang, G.J. Guo, The effects of ice on methane hydrate nucleation: a microcanonical molecular dynamics study, Phys. Chem. Chem. Phys. 19 (29) (2017) 19496-19505. |
[1] | Zhengyong Xu, Yan Du, Yan Liu, Jintao Ou, Jingwei Chen, Huaming Xie. Effect analysis on degradation mechanism of dioxins under hydrothermal conditions by molecular dynamic simulation [J]. Chinese Journal of Chemical Engineering, 2025, 80(4): 274-280. |
[2] | Yang Tang, Qing Gu, Na Xie, Yufa He, Yunjian Zhou, Zeliang Li, Guorong Wang. Particle bond destruction based on spiral-cyclone coupling mechanism for the cementation of hydrates and mud–sand [J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 120-130. |
[3] | Yu-Jie Zhu, Yu-Zhou Chen, Yan Xie, Jin-Rong Zhong, Xiao-Hui Wang, Peng Xiao, Yi-Fei Sun, Chang-Yu Sun, Guang-Jin Chen. Microscopic experimental study on the effects of NaCl concentration on the self-preservation effect of methane hydrates under 268.15 K [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 1-14. |
[4] | Limin Wang, Jinrong Duan, Bei Liu, Zhi Li, Guangjin Chen. The effect of ethylene-vinyl acetate copolymer on the formation process of wax crystals and hydrates [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 109-119. |
[5] | Jinrong Zhong, Yu Tian, Yifei Sun, Li Wan, Yan Xie, Yujie Zhu, Changyu Sun, Guangjin Chen, Yuefei Zhang. The dual action of N2 on morphology regulation and mass-transfer acceleration of CO2 hydrate film [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 120-129. |
[6] | Bohui Shi, Shangfei Song, Yuchuan Chen, Shunkang Fu, Lihao Liu, Xinyao Yang, Haihao Wu, Guangjin Chen, Jing Gong. Rheological study of methane gas hydrates in the presence of micron-sized sand particles [J]. Chinese Journal of Chemical Engineering, 2024, 70(6): 149-161. |
[7] | Xian Sun, Peng Xiao, Qinfeng Shi, Lingban Wang, Zhenbin Xu, Yuhao Bu, Xiaohui Wang, Yifei Sun, Changyu Sun, Guangjin Chen. Rate-limiting factors in hydrate decomposition through depressurization across various scales: A mini-review [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 206-219. |
[8] | Yin Wu, Yan Sun. Rational surface charge engineering of haloalkane dehalogenase for boosting the enzymatic performance in organic solvent solutions [J]. Chinese Journal of Chemical Engineering, 2024, 65(1): 276-285. |
[9] | Yang Yang, Dandan Liu, Xing Liang, Xiaobing Li. Influence of mineral species on oil–soil interfacial interaction in petroleum-contaminated soils [J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 147-156. |
[10] | Wende Tian, Jiawei Zhang, Zhe Cui, Haoran Zhang, Bin Liu. Microscopic mechanism study and process optimization of dimethyl carbonate production coupled biomass chemical looping gasification system [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 291-305. |
[11] | Tatyana P. Adamova, Sergey S. Skiba, Andrey Yu. Manakov, Sergey Y. Misyura. Growth rate of CO2 hydrate film on water–oil and water–gaseous CO2 interface [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 266-272. |
[12] | Fufeng Liu, Luying Jiang, Jingcheng Sang, Fuping Lu, Li Li. Molecular basis of cross-interactions between Aβ and Tau protofibrils probed by molecular simulations [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 173-180. |
[13] | Pan Huang, Zekai Zhang, Yuxin Chen, Changwei Liu, Yong Zhang, Cheng Lian, Yajun Ding, Honglai Liu. Multi-scale simulation of diffusion behavior of deterrent in propellant [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 29-35. |
[14] | Jialei Sha, Chenyi Liu, Zhihong Ma, Weizhong Zheng, Weizhen Sun, Ling Zhao. Understanding the interfacial behaviors of benzene alkylation with butene using chloroaluminate ionic liquid catalyst: A molecular dynamics simulation [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 44-52. |
[15] | Fang Chen, Tao Zhou, Lijie Li, Chongwei An, Jun Li, Duanlin Cao, Jianlong Wang. Morphology prediction of dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50) crystal in different solvent systems using modified attachment energy model [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 181-193. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 3
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 17
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||