Chinese Journal of Chemical Engineering ›› 2025, Vol. 81 ›› Issue (5): 161-170.DOI: 10.1016/j.cjche.2024.12.017
Previous Articles Next Articles
Abbas Daham1, Abdeldjalil Zegaoui1, Athar Ali Khan Gorar1, Zhicheng Wang1, Jun Wang1, Zhiyi Guo1, Zhongcheng Pan1, Wenbin Liu1, Mehdi Derradji2
Received:2024-08-19
Revised:2024-12-17
Accepted:2024-12-23
Online:2025-03-08
Published:2025-05-28
Contact:
Jun Wang,E-mail:wj6267@hrbeu.edu.cn;Zhongcheng Pan,E-mail:421336390@herbeu.edu.cn;Wenbin Liu,E-mail:wjlwb@163.com
Supported by:Abbas Daham1, Abdeldjalil Zegaoui1, Athar Ali Khan Gorar1, Zhicheng Wang1, Jun Wang1, Zhiyi Guo1, Zhongcheng Pan1, Wenbin Liu1, Mehdi Derradji2
通讯作者:
Jun Wang,E-mail:wj6267@hrbeu.edu.cn;Zhongcheng Pan,E-mail:421336390@herbeu.edu.cn;Wenbin Liu,E-mail:wjlwb@163.com
基金资助:Abbas Daham, Abdeldjalil Zegaoui, Athar Ali Khan Gorar, Zhicheng Wang, Jun Wang, Zhiyi Guo, Zhongcheng Pan, Wenbin Liu, Mehdi Derradji. Thermal aging and pyrolysis behavior of hyperbranched polymers grafted carbon fibers reinforced phthalonitrile/cyanate ester blend composites[J]. Chinese Journal of Chemical Engineering, 2025, 81(5): 161-170.
Abbas Daham, Abdeldjalil Zegaoui, Athar Ali Khan Gorar, Zhicheng Wang, Jun Wang, Zhiyi Guo, Zhongcheng Pan, Wenbin Liu, Mehdi Derradji. Thermal aging and pyrolysis behavior of hyperbranched polymers grafted carbon fibers reinforced phthalonitrile/cyanate ester blend composites[J]. 中国化学工程学报, 2025, 81(5): 161-170.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2024.12.017
| [1] T.D. Bulcak, M.O. Bora, S. Fidan, E. Yarar, E. Akagunduz, Exploring the effects of thermal aging on scratch resistance of carbon fiber reinforced composite materials: a comprehensive study, Polym. Compos. 44 (10) (2023) 7084-7101. [2] T. Butler, C. Bunton, H. Ryou, B. Dyatkin, N. Weise, M. Laskoski, Influence of molecular weight on thermal and mechanical properties of bisphenol A-based phthalonitrile resins, J. Appl. Polym. Sci. 139 (11) (2022) 51783. [3] J.G. Deng, Y. Song, Z.L. Xu, Y. Nie, Z.B. Lan, Thermal aging effects on the mechanical behavior of glass-fiber-reinforced polyphenylene sulfide composites, Polymers 14 (7) (2022) 1275. [4] J.C. Yang, C.M. Ji, D.Q. Wang, H.Q. Zhang, Z.G. Zhou, J.Q. Hu, B. Wang, Fire behavior and post-fire residual tensile strength prediction of carbon fiber/phthalonitrile composite laminates, Compos. Sci. Technol. 252 (2024) 110624. [5] D. Augustine, M.S. Chandran, D. Mathew, C.P. Reghunadhan Nair, Chapter 18 Polyphthalonitrile resins and their high-end applications, In: Thermosets, 2nd edition, Elsevier, 2018. [6] R. Chen, J. Hu, G. Li, J. Zhang, X. Lian, B. Wang, Comprehensive Performance of High-Temperature-Resistant and Low-Dielectric-Coefficient Phthalonitrile Resin, Acs Appl. Polym. Mater. 6(5) (2024) 2856-2867. [7] K.B.M. Ismail, M.A. Kumar, S. Mahalingam, B. Raj, J. Kim, Carbon fiber-reinforced polymers for energy storage applications, J. Energy Storage 84 (2024) 110931. [8] D.Q. Wang, J.Q. Hu, D.X. Zhao, J.C. Yang, H.Q. Zhang, B. Wang, M. Liu, Enhanced mechanical and thermal properties of phenolic-type phthalonitrile nanocomposites with fumed silica nanoparticles, Polymer 296 (2024) 126783. [9] A.E. Sahin, E. Yarar, H. Kara, E.B. Cep, M.O. Bora, T. Yilmaz, Thermal aging effect of polyamide 6 matrix composites produced by Tailor Fiber Placement (TFP) under compression molding on sliding wear properties, Polym. Compos. 45 (1) (2024) 98-110. [10] V. Aleshkevich, O. Morozov, A. Babkin, A. Kepman, B. Bulgakov, High-performance C/C composites derived from phthalonitrile matrix CFRP via a few cycles of vacuum-assisted impregnation-carbonization, Compos. Part A Appl. Sci. Manuf. 182 (2024) 108201. [11] X. Xiong, L. Yao, R. Ren, D. Liu, N. Li, Preparation and properties of high-temperature resistant bisphthalonitrile resins containing trifluoromethyl groups reinforced by poly (aryl ether nitrile) capped by phthalonitrile and their composites, High Perform. Polym. 36(3) (2024) 143-152. [12] A. Daham, A. Zegaoui, M. Derradji, A.A. Khan Gorar, J. Wang, B. Tian, Z.C. Pan, W.B. Liu, Z. Moussa, Shielding performances of short carbon fibers and tungsten particles reinforced benzoxazine resin matrix composites, J. Reinf. Plast. Compos. 43 (7-8) (2024) 386-397. [13] Y. Qiao, C. Liu, H. Jia, Y. Zhang, W.Q. Zhao, Y.N. Li, T. Jin, S.H. Zhang, X.G. Jian, Phthalocyanine-terminated poly(aryl ether) sizing: an efficient strategy in interfacial interactions optimization of CF/PPESK composites with excellent thermal-resistant, Compos. Part A Appl. Sci. Manuf. 179 (2024) 108057. [14] H.F. Li, D.Z. Wang, C.Y. Qu, Z.L. Liu, H. Feng, K. Su, Preparation and performances of bisphthalonitrile resin and novolac cyanate ester resin blends, Polym. Bull. 76 (11) (2019) 5649-5660. [15] L. Chen, D.X. Ren, S.J. Chen, H. Pan, M.Z. Xu, X.B. Liu, Copolymerization of phthalonitrile-based resin containing benzoxazine and cyanate ester: Curing behaviors, fiber-reinforced composite laminates and improved properties, Express Polym. Lett. 13 (5) (2019) 456-468. [16] X.L. Yang, K. Li, M.Z. Xu, K. Jia, X.B. Liu, Designing a low-temperature curable phenolic/benzoxazine-functionalized phthalonitrile copolymers for high performance composite laminates, J. Polym. Res. 24 (11) (2017) 195. [17] Y. Hu, Z.H. Weng, Y. Qi, J.Y. Wang, S.H. Zhang, C. Liu, L.S. Zong, X.G. Jian, Self-curing triphenol A-based phthalonitrile resin precursor acts as a flexibilizer and curing agent for phthalonitrile resin, RSC Adv. 8 (57) (2018) 32899-32908. [18] R. Chen, J.L. Zhang, H.B. Chen, G. Li, J.Q. Hu, H.Q. Zhang, B. Wang, Toughening mechanism of phthalonitrile polymer: MD simulation and experiment, Compos. Sci. Technol. 232 (2023) 109841. [19] H.Q. Zhang, B. Wang, Y.N. Wang, H. Zhou, Novolac/phenol-containing phthalonitrile blends: curing characteristics and composite mechanical properties, Polymers 12 (1) (2020) 126. [20] D. Augustine, D. Mathew, C.P. Reghunadhan Nair, Phenol-containing phthalonitrile polymers-synthesis, cure characteristics and laminate properties, Polym. Int. 62 (7) (2013) 1068-1076. [21] X.D. Li, F. Zhou, T. Zheng, Z.Q. Wang, H. Zhou, H.R. Chen, L. Xiao, D.X. Zhang, G.H. Wang, Blends of cyanate ester and Phthalonitrile-Polyhedral oligomeric silsesquioxane copolymers: cure behavior and properties, Polymers 11 (1) (2019) 54. [22] J.L. Dysart, J.D. Wolfgang, A.D. Smith, O.F. Atoyebi, J.M. Wallace, W.A. Maza, Z. Wang, M. Laskoski, Characterization of eumelanin as an additive in high-temperature phthalonitrile-based resin blends, Macromol. Chem. Phys. 224 (19) (2023) 2300074. [23] J.Z. Ma, K. Cheng, J.B. Lv, C. Chen, J.H. Hu, K. Zeng, G. Yang, Phthalonitrile-PPO blends: cure behavior and properties, Chin. J. Polym. Sci. 36 (4) (2018) 497-504. [24] N. Sreelal, K. Sunitha, N. Sreenivas, F. Mohammad, S. Chandran M, Investigations on Phthalonitrile-Cyanate ester blends and their light weight composites; Synthesis, thermal, mechanical and ablative characteristics, Mater. Chem. Phys. 305 (2023) 128005. [25] B.G. Sun, Q. Lei, Y. Guo, H.Q. Shi, J.B. Sun, K.X. Yang, H. Zhou, Y.Q. Li, N. Hu, H. Wang, S.Y. Fu, Enhanced mechanical properties at 400 °C of carbon fabric reinforced phthalonitrile composites by high temperature postcure, Compos. Part B Eng. 166 (2019) 681-687. [26] B.G. Sun, H.Q. Shi, K.X. Yang, Q. Lei, Y.Q. Li, Y.Q. Fu, N. Hu, Y. Guo, H. Zhou, S.Y. Fu, Effects of 3-aminophenylacetylene on mechanical properties at elevated temperatures of carbon fiber/phthalonitrile composites, Compos. Commun. 18 (2020) 55-61. [27] V.V. Aleshkevich, B.A. Bulgakov, Y.V. Lipatov, A.V. Babkin, A.V. Kepman, High performance carbon-carbon composites obtained by a two-step process from phthalonitrile matrix composites, Mendeleev Commun. 32 (3) (2022) 327-330. [28] D.D. Dominguez, T.M. Keller, Properties of phthalonitrile monomer blends and thermosetting phthalonitrile copolymers, Polymer 48 (1) (2007) 91-97. [29] D. Augustine, D. Mathew, C.P. Reghunadhan Nair, Phthalonitrile resin bearing cyanate ester groups: synthesis and characterization, RSC Adv. 5 (111) (2015) 91254-91261. [30] X.L. Yang, K. Li, Q.C. Liu, W.W. Lei, H. Liu, W. Feng, P. Wang, X.B. Liu, Designing phthalonitrile/hydroxyl compound systems for high performance CFRP composites, Mater. Res. Express 8 (3) (2021) 035101. [31] N. Zavatta, F. Rondina, M.P. Falaschetti, L. Donati, Effect of thermal ageing on the mechanical strength of carbon fibre reinforced epoxy composites, Polymers 13 (12) (2021) 2006. [32] M. Derradji, O. Mehelli, K. Khiari, S. Abdous, S. Soudjrari, A. Zegaoui, N. Ramdani, W.B. Liu, M. Al Hassan, High performance green composite from vanillin-based benzoxazine containing phthalonitrile and silane surface modified basalt fibers, High Perform. Polym. 34 (9) (2022) 989-997. [33] A. Ali Khan Gorar, M.E. Qaisarani, W.B. Liu, Epoxy composites reinforced with almond shell and date seed particles: mechanical properties, machinability, conductivity, thermal stability, and stress analysis, IEEE Trans. Dielectr. Electr. Insul. 32 (2025) 145-152. [34] L. Yang, Y. Chen, Z.Z. Xu, H. Xia, T. Natuski, Y.S. Xi, Q.Q. Ni, Effect of surface modification of carbon fiber based on magnetron sputtering technology on tensile properties, Carbon 204 (2023) 377-386. [35] L.C. Ma, G. Wang, X.R. Li, C. Yang, H. Zheng, C.Y. Yu, Q.J. Li, J.P. Xin, B.K. Lv, Y.H. Shen, G.J. Song, Grafting hyperbranched polymer with terminal hydroxyl groups onto carbon fiber surface in two-step polycondensation for improving the interfacial properties of carbon fiber/epoxy resin composite, Polym. Compos. 40 (S2) (2019) E1378-E1387. [36] Z. Sun, Y.Q. Li, P. Huang, H.J. Cao, W. Zeng, J. Li, F. Li, B.G. Sun, H.Q. Shi, Z.L. Zhou, N. Hu, S.Y. Fu, Temperature-dependent mechanical properties of polyetherimide composites reinforced by graphene oxide-coated short carbon fibers, Compos. Struct. 270 (2021) 114075. [37] Z. Sun, F.L. Guo, X.P. Wu, Y.Q. Li, W. Zeng, Q. Chen, T. Huang, P. Huang, Y.Q. Fu, X.Y. Ma, N. Hu, S.Y. Fu, Experimental and simulation investigations of the effect of hybrid GO-thermoplastic polyimide sizing on the temperature-dependent tensile behavior of short carbon fiber/polyetherimide composites, Compos. Sci. Technol. 218 (2022) 109166. [38] S.X. D. Jinghui, C. Zhen, Y. I. N. Weihao, J. Qian, C. Xinggang, Effect of shortcut carbon fibers on performance of phthalonitrile/carbon fiber composites, China Plastics 37(2) (2023) 31-37. (in Chinese). [39] W.B. Pei, Y.N. Zhao, J.M. Guo, Y.H. Ao, S.T. Dai, Y.X. Yuan, X.J. Hu, L. Liu, Y. Liu, Enhancing interfacial solvent resistance and mechanical properties of carbon fiber/polyether ether ketone composites with water-borne sizing agents based on cross-linkable polyphthalonitrile, Polym. Compos. 45 (7) (2024) 6226-6238. [40] Y. Ma, M. Ueda, T. Yokozeki, T. Sugahara, Y.Q. Yang, H. Hamada, A comparative study of the mechanical properties and failure behavior of carbon fiber/epoxy and carbon fiber/polyamide 6 unidirectional composites, Compos. Struct. 160 (2017) 89-99. [41] X.L. Yang, K. Li, M.Z. Xu, X.B. Liu, Significant improvement of thermal oxidative mechanical properties in phthalonitrile GFRP composites by introducing microsilica as complementary reinforcement, Compos. Part B Eng. 155 (2018) 425-430. [42] Zongqi Yang, Yizhuo Gu, Yuwei Liu, Maoyuan Li, Shaokai Wang, Min Li, Thermal-oxidative aging mechanism of carbon fiber reinforced self-catalytic phthalonitrile resin matrix composite laminate at 450-500°C, Compos. Part A-Appl. S. 190 (2025) 108689. [43] A. Daham, A. Zegaoui, H.A. Ghouti, M. Derradji, W.N. Cai, J. Wang, W.B. Liu, J.Y. Wang, Z. Moussa, Structural, morphological and mechanical properties of hyperbranched polymers coated carbon fibers reinforced DCBA/BA-a composites, Compos. Interfaces 27 (10) (2020) 905-919. [44] A. Zegaoui, M. Derradji, R.K. Ma, W.A. Cai, A. Medjahed, W.B. Liu, A.Q. Dayo, J. Wang, L.L. Zhang, Y. Ramdani, Simultaneous toughening and reinforcing of cyanate ester/benzoxazine resins with improved mechanical and thermal properties by using hyperbranched polyesters, J. Polym. Eng. 38 (9) (2018) 839-848. [45] B.F. Shen, S.L. Lu, C.F. Sun, Z.B. Song, F.Y. Zhang, J. Kang, Y. Cao, M. Xiang, Effects of amino hyperbranched polymer-modified carbon nanotubes on the crystallization behavior of poly (L-lactic acid) (PLLA), Polymers 14 (11) (2022) 2188. [46] M. Aravindh, S. Sathish, R. Ranga Raj, A. Karthick, V. Mohanavel, P.P. Patil, M. Muhibbullah, S.M. Osman, A review on the effect of various chemical treatments on the mechanical properties of renewable fiber-reinforced composites, Adv. Mater. Sci. Eng. 2022 (1) (2022) 2009691. [47] J. Li, Y.T. Fu, W.L. Pi, Y.Q. Li, S.Y. Fu, Improving mechanical performances at room and elevated temperatures of 3D printed polyether-ether-ketone composites by combining optimal short carbon fiber content and annealing treatment, Compos. Part B Eng. 267 (2023) 111067. [48] D. Chen, J.Z. Li, Y.H. Yuan, C. Gao, Y.G. Cui, S.C. Li, X. Liu, H.Y. Wang, C. Peng, Z.J. Wu, A review of the polymer for cryogenic application: methods, mechanisms and perspectives, Polymers 13 (3) (2021) 320. [49] H. Zhang, X.W. Zhang, D.T. Li, J. Zhuang, Y. Liu, H.C. Liu, D.M. Wu, J.C. Feng, J.Y. Sun, Synergistic enhanced thermal conductivity of polydimethylsiloxane composites via introducing SCF and hetero-structured GB@rGO hybrid fillers, Adv. Compos. Hybrid Mater. 5 (3) (2022) 1756-1768. [50] L.C. Ma, Y.Y. Zhu, M.Z. Wang, X.B. Yang, G.J. Song, Y.D. Huang, Enhancing interfacial strength of epoxy resin composites via evolving hyperbranched amino-terminated POSS on carbon fiber surface, Compos. Sci. Technol. 170 (2019) 148-156. [51] L.N. Yang, P. Han, Z. Gu, Grafting of a novel hyperbranched polymer onto carbon fiber for interfacial enhancement of carbon fiber reinforced epoxy composites, Mater. Des. 200 (2021) 109456. |
| [1] | Meiting Guo, Youting Wang, Ziliang Xie, Kok bing Tan, Fangsong Guo, Kang Sun, Jianchun Jiang, Guowu Zhan. Preparation and extrusion of ZSM-5 based on biomass templates for enhanced mechanical properties and catalytic pyrolysis performance [J]. Chinese Journal of Chemical Engineering, 2025, 80(4): 47-60. |
| [2] | Chen Liang, Weiqiang Chen, Linghong Yin, Xianli Wu, Jie Xu, Chunhua Du, Wangda Qu. Properties evolutions during carbonization of carbon foam using lignin as sole precursor [J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 33-43. |
| [3] | Shuilai Qiu, Hang Wu, Fukai Chu, Lei Song. Boron nitride silicone rubber composite foam with low dielectric and high thermal conductivity [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 224-230. |
| [4] | Yang Wang, Ye Fang, Xudong Yang, Hongmin Cong, Zhengbai Zhao, Chao Yan. Enhanced thermal conductivity and mechanical properties of boron nitride@polymethylacrylimide/epoxy composites with self-assembled stable three-dimensional network [J]. Chinese Journal of Chemical Engineering, 2024, 75(11): 230-238. |
| [5] | Jinlong Li, Xiaoqing Wang, Puxu Liu, Xiaohua Liu, Libo Li, Jinping Li. Shaping of metal-organic frameworks through a calcium alginate method towards ethylene/ethane separation [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 17-24. |
| [6] | Jie Wang, Ling Zhang, Chunzhong Li. Superhydrophobic and mechanically robust polysiloxane composite coatings containing modified silica nanoparticles and PS-grafted halloysite nanotubes [J]. Chinese Journal of Chemical Engineering, 2022, 52(12): 56-65. |
| [7] | Zhongxin Lin, Renliang Huang, Jiangjiexing Wu, Anastasia Penkova, Wei Qi, Zhimin He, Rongxin Su. Injectable self-healing nanocellulose hydrogels crosslinked by aluminum: Cellulose nanocrystals vs. cellulose nanofibrils [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 389-397. |
| [8] | Anrong Zeng, Yangtao Wang, Dajun Li, Juedong Guo, Qiaowen Chen. Preparation and antibacterial properties of polycaprolactone/quaternized chitosan blends [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 462-471. |
| [9] | Tadele Daniel Mekuria, Lei Wang, Chunhong Zhang, Ming Yang, Qingtao Lv, Diaa Eldin Fouad. Synthesis and characterization of high strength polyimide/silicon nitride nanocomposites with enhanced thermal and hydrophobic properties [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 446-453. |
| [10] | Guohao Du, Jianfeng Hu, Jianhui Zhou, Guangwu Wang, Shengli Guan, Hailing Liu, Man Geng, Chuang Lü, Yaoqiang Ming, Jinqing Qu. The study on the mechanical properties of PU/MF double shell selfhealing microcapsules [J]. Chinese Journal of Chemical Engineering, 2020, 28(5): 1459-1473. |
| [11] | Yexiao Yu, Guanping Jin, Yuhong Fang, Zheng Xu, Xiaoyuan Lü, Chunnian Chen. Potential-aided recovery of iodide using 2-D nanosheet CuxO coating polymer/graphene/carbon fibers composite [J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 1046-1054. |
| [12] | Abdeldjalil Zegaoui, Ruikun Ma, Abdul Qadeer Dayo, Mehdi Derradji, Jun Wang, Wenben Liu, Yile Xu, Wan'an Cai. Morphological, mechanical and thermal properties of cyanate ester/benzoxazine resin composites reinforced by silane treated natural hemp fibers [J]. Chin.J.Chem.Eng., 2018, 26(5): 1219-1228. |
| [13] | Khaliq Majeed, Mariam Al Ali AlMaadeed, Moustafa M. Zagho. Comparison of the effect of carbon, halloysite and titania nanotubes on the mechanical and thermal properties of LDPE based nanocomposite films [J]. Chin.J.Chem.Eng., 2018, 26(2): 428-435. |
| [14] | Dongyan Li, Chen Gu, Feng Han, Zhaoxiang Zhong, Weihong Xing. Catalytic performance of hybrid Pt@ZnO NRs on carbon fibers for methanol electro-oxidation [J]. Chin.J.Chem.Eng., 2017, 25(12): 1871-1876. |
| [15] | Fenglei Bi, Jianqiang Shao, Zhenhao Xi, Ling Zhao, Di Liu. Synthesis and characterization of copolymers of poly(m-xylylene adipamide) and poly(ethylene terephthalate) oligomers by melt copolycondensation [J]. , 2016, 24(9): 1290-1297. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备 11010102001993号 
