[1] M. Büchs, N. Cass, C. Mullen, K. Lucas, D. Ivanova, Emissions savings from equitable energy demand reduction, Nat. Energy 8(7) (2023) 758-769. [2] A.T.D. Perera, K. Javanroodi, D. Mauree, V.M. Nik, P. Florio, T.Z. Hong, D.L. Chen, Challenges resulting from urban density and climate change for the E energy transition, Nat. Energy 8(2023) 397-412. [3] J.E. Carruthers, L.H. Solomon, G.I. Atwater, J.P. Riva, A.L. Waddams, natural gas, Encycl. Britannica, London, (2025), https://www.britannica.com/science/ natural-gas. [4] M. Sesini, S. Giarola, A.D. Hawkes, The impact of liquefied natural gas and storage on the EU natural gas infrastructure resilience, Energy 209(2020) 118367. [5] Y.H. Wang, S.S. Fan, X.M. Lang, Reviews of gas hydrate inhibitors in gasdominant pipelines and application of kinetic hydrate inhibitors in China, Chin. J. Chem. Eng. 27(9) (2019) 2118-2132. [6] S. Elhenawy, M. Khraisheh, F. Almomani, M.A. Al-Ghouti, M.K. Hassan, A. AlMuhtaseb, Towards gas hydrate-free pipelines: a comprehensive review of gas hydrate inhibition techniques, Energies 15(22) (2022) 8551. [7] H.R. Sun, B.B. Chen, K.H. Li, Y.C. Song, M.J. Yang, L.L. Jiang, J.Y. Yan, Methane hydrate re-formation and blockage mechanism in a pore-level water-gas flow process, Energy 263(2023) 125851. [8] J. Zhang, L. Shi, C.X. Li, F. Yang, B. Yao, G.Y. Sun, Research methods and devices for hydrate characteristics during oil and gas transportation: A review, Chin. Chem. Eng. 73(2024) 130-145. [9] A.P. Semenov, Y.H. Gong, V.I. Medvedev, A.S. Stoporev, V.A. Istomin, V.A. Vinokurov, T.D. Li, New insights into methane hydrate inhibition with blends of vinyl lactam polymer and methanol, monoethylene glycol, or diethylene glycol as hybrid inhibitors, Chem. Eng. Sci. 268(2023) 118387. [10] A. Qasim, M.S. Khan, B. Lal, A.M. Shariff, A perspective on dual purpose gas hydrate and corrosion inhibitors for flow assurance, J. Petrol. Sci. Eng. 183(2019) 106418. [11] R.K. Srivastava, P.K. Sarangi, L. Bhatia, A.K. Singh, K.P. Shadangi, Conversion of methane to methanol: technologies and future challenges, Biomass Convers. Biorefin. 12(5) (2022) 1851-1875. [12] H. Soucie, M. Elam, W.E. Mustain, Practical assessment for at-scale electrochemical conversion of methane to methanol, ACS Energy Lett. 8(2) (2023) 1218-1229. [13] X.H. Wang, E. Wright, N. Gao, Y. Li, Evaluation on excess entropy scaling method predicting thermal transport properties of liquid HFC/HFO refrigerants, J. Therm. Sci. 31(5) (2022) 1465-1475. [14] N. Li, X.H. Wang, G.M. Chen, N. Gao, Linking thermal conductivity and selfdiffusion coefficient with a simple dimensionless calorimetric parameter for saturated liquids, Ind. Eng. Chem. Res. 61(41) (2022) 15414-15422. [15] J.P. Hern andez, L.A. Forero, J.A. Velasquez, Modelling low pressure LLE and VLE of methanol/alkane mixtures with a modified Peng-Robinson EoS and the Huron-Vidal mixing rules, Fluid Phase Equilib. 546(2021) 113123. [16] S. Avaji, M.J. Amani, M. Ghaedi, Modeling the equilibrium of two and threephase systems including water, alcohol, and hydrocarbons with CPA EOS and its improvement for electrolytic systems by Debye-Huckel equation, J. Nat. Gas Sci. Eng. 90(2021) 103905. [17] Y.B. Wang, Z.Y. Li, S.J. Zhi, Q. Yang, C.J. Li, W.L. Jia, A predictive model for hydrate formation conditions in alcohol-containing systems based on the cubic-plus-association state equation, Energies 16(23) (2023) 7728. [18] A. Kumar, R. Upadhyay, A new two-parameters cubic equation of state with benefits of three-parameters, Chem. Eng. Sci. 229(2021) 116045. [19] E.W. Lemmon, I.H. Bell, M.L. Huber, M.O. McLinden, Refprop, 2018. [20] Ma Xia, Hua Guo, Determination and study on the solubility of methane in heptane + cyclohexane and heptane + ethanol at high pressures, J. Chem. Eng. Data 49(3) (2004) 479-482. [21] M.H. Kapateh, A. Chapoy, R. Burgass, B. Tohidi, Experimental measurement and modeling of the solubility of methane in methanol and ethanol, J. Chem. Eng. Data 61(1) (2016) 666-673. [22] L.K. Wang, G.J. Chen, G.H. Han, X.Q. Guo, T.M. Guo, Experimental study on the solubility of natural gas components in water with or without hydrate inhibitor, Fluid Phase Equilib. 207(1-2) (2003) 143-154. [23] K. Takeuchi, K. Matsumura, K. Yaginuma, Vapor-liquid equilibria for multicomponent systems containing methanol-acid gases 1. The solubility of inert gases in methanol, Fluid Phase Equilib. 14(1983) 255-263. [24] L.M.C. Oliveira, F.R.G. Ribeiro, M.L. Alcantara, G.O. Pisoni, V.F. Cabral, L. Cardozo-Filho, S. Mattedi, High pressure vapor-liquid equilibria for binary methane and protic ionic liquid based on propionate anions, Fluid Phase Equilib. 426(2016) 65-74. [25] Z.X. Lyu, H.F. Ma, W.X. Qian, H.T. Zhang, W.Y. Ying, Measurement and modelling of isothermal solubility of methane in methanol from 213.15 K to 273.15 K, J. Chem. Thermodyn. 141(2020) 105917. [26] M. Frost, N. von Solms, D. Richon, G.M. Kontogeorgis, Measurement of vaporeliquideliquid phase equilibrium: equipment and results, Fluid Phase Equilib. 405(2015) 88-95. [27] A.Z. Francesconi, H. Lentz, E.U. Franck, Phase equilibriums and PVT data for the methane-methanol system to 300 MPa and 240.degree.C, J. Phys. Chem. 85(22) (1981) 3303-3307. [28] H. Nourozieh, M. Kariznovi, J. Abedi, Phase equilibrium measurements and thermodynamic modeling of methane alcohol systems at ambient temperature, J. Chem. Thermodyn. 54(2012) 165-170. [29] T.J. Hughes, M.E. Kandil, B.F. Graham, E.F. May, Simulating the capture of CO2 from natural gas: new data and improved models for methane+carbon dioxide+methanol, Int. J. Greenh. Gas Control 31(2014) 121-127. [30] T. Ukai, D. Kodama, J. Miyazaki, M. Kato, Solubility of methane in alcohols and saturated density at 280.15 K, J. Chem. Eng. Data 47(5) (2002) 1320-1323. [31] H. Lazalde-Crabtree, G.J.F. Breedveld, J.M. Prausnitz, Solvent losses in gas absorption. Solubility of methanol in compressed natural and synthetic gases, AIChE J. 26(3) (1980) 462-470. [32] J.H.Hong,P.V.Malone,M.D. Jett,R.Kobayashi, Themeasurement and interpretation of the fluid-phase equilibria of a normal fluid in a hydrogen bonding solvent: the methaneemethanol system, Fluid Phase Equilib. 38(1-2) (1987) 83-96. [33] A. Vetere, Vapor-liquid equilibria with supercritical gases calculated by the excess Gibbs energy method, Fluid Phase Equilib. 28(3) (1986) 265-281. [34] I.H. Bell, E.W. Lemmon, Automatic fitting of binary interaction parameters for multi-fluid Helmholtz-energy-explicit mixture models, J. Chem. Eng. Data 61(11) (2016) 3752-3760. |